Objective: Behcet's disease is the association of recurrent aphthous stomatitis with genital ulceration and eye disease. Neurologic involvement patterns include meningomyelitis, a brain stem syndrome, pyramidal and extrapyramidal abnormality and stroke. In the present study, subclinical involvement was investigated by using P300 in Behcet's patients without neurological manifestation.
Methods: Fifteen patients and 15 healthy volunteers were accepted for the study. P300 from vertex (Cz) electrode sites of the 10-20 system using electrodes and motor response time were recorded.
Results: Patients had significantly prolonged latencies of P300 as compared to normal controls (p=0.013) but no significant differences in amplitude (p=1.000). Patients showed a significantly delayed motor response time than controls (p=0.006). Nine patients (60%) had P300 latency and eight patients (53.3%) had motor response time values exceeding the mean of controls by two standard deviations.
Conclusion: The findings suggest that the P300 measures and motor response time may reflect subclinical neurologic involvement in Behcet's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/s0317167100052586 | DOI Listing |
Mol Ther
January 2025
Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA. Electronic address:
Amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) are part of a spectrum of diseases that share several causative genes, resulting in a combinatory of motor and cognitive symptoms and abnormal protein aggregation. Multiple unbiased studies have revealed that proteostasis impairment at the level of the endoplasmic reticulum (ER) is a transversal pathogenic feature of ALS/FTD. The transcription factor XBP1s is a master regulator of the unfolded protein response (UPR), the main adaptive pathway to cope with ER stress.
View Article and Find Full Text PDFNeuroimage
January 2025
Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China. Electronic address:
J Am Chem Soc
January 2025
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
Understanding and effectively controlling molecular conformational changes are essential for developing responsive and dynamic molecular systems. Here, we report that an oriented external electric field (OEEF) is an effective catalyst for the cis-trans isomerization of stiff-stilbene, a key component of overcrowded alkene-based rotary motors. This reversible isomerization occurs under ambient conditions, is free from side reactions, and has been verified using ultraperformance liquid chromatography and UV-vis absorption spectroscopy.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Scuola Superiore Meridionale, Napoli, Italy.
Light-driven molecular rotary motors are nanometric machines able to convert light into unidirectional motions. Several types of molecular motors have been developed to better respond to light stimuli, opening new avenues for developing smart materials ranging from nanomedicine to robotics. They have great importance in the scientific research across various disciplines, but a detailed comprehension of the underlying ultrafast photophysics immediately after photo-excitation, that is, Franck-Condon region characterization, is not fully achieved yet.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Robotics and Mechatronics, Tokyo Denki University, Tokyo 120-8551, Japan.
As robots become increasingly integrated into human society, the importance of human-machine interfaces continues to grow. This study proposes a faster and more accurate control system for myoelectric prostheses by considering the Electromechanical Delay (EMD), a key characteristic of Electromyography (EMG) signals. Previous studies have focused on systems designed for wrist movements without attempting implementation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!