Transketolase (TK) catalyzes reactions in the Calvin cycle and the oxidative pentose phosphate pathway (OPPP) and produces erythrose-4-phosphate, which is a precursor for the shikimate pathway leading to phenylpropanoid metabolism. To investigate the consequences of decreased TK expression for primary and secondary metabolism, we transformed tobacco with a construct containing an antisense TK sequence. The results were as follows: (1) a 20 to 40% reduction of TK activity inhibited ribulose-1,5-bisphosphate regeneration and photosynthesis. The inhibition of photosynthesis became greater as irradiance increased across the range experienced in growth conditions (170 to 700 micromol m(-2) sec(-1)). TK almost completely limited the maximum rate of photosynthesis in saturating light and saturating CO(2). (2) Decreased expression of TK led to a preferential decrease of sugars, whereas starch remained high until photosynthesis was strongly inhibited. One of the substrates of TK (fructose-6-phosphate) is the starting point for starch synthesis, and one of the products (erythrose-4-phosphate) inhibits phosphoglucose isomerase, which catalyzes the first reaction leading to starch. (3) A 20 to 50% decrease of TK activity led to decreased levels of aromatic amino acids and decreased levels of the intermediates (caffeic acid and hydroxycinnamic acids) and products (chlorogenic acid, tocopherol, and lignin) of phenylpropanoid metabolism. (4) There was local loss of chlorophyll and carotene on the midrib when TK activity was inhibited by >50%, spreading onto minor veins and lamina in severely affected transformants. (5) OPPP activity was not strongly inhibited by decreased TK activity. These results identify TK activity as an important determinant of photosynthetic and phenylpropanoid metabolism and show that the provision of precursors by primary metabolism colimits flux into the shikimate pathway and phenylpropanoid metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC135503PMC
http://dx.doi.org/10.1105/tpc.13.3.535DOI Listing

Publication Analysis

Top Keywords

phenylpropanoid metabolism
20
activity inhibited
12
shikimate pathway
8
decreased expression
8
decreased levels
8
activity
7
metabolism
7
photosynthesis
5
phenylpropanoid
5
decreased
5

Similar Publications

Multiomics Analysis Reveals Key Targeted Metabolic Pathways Underlying the Hormesis and Detrimental Effects of Enrofloxacin on Rice Plants.

J Agric Food Chem

January 2025

Institute of Virology and Biotechnology, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China.

Fluoroquinolone antibiotic enrofloxacin (ENR) is frequently detected in agricultural environments. The hormesis and detrimental effects of ENR on crops have been extensively observed. However, the molecular mechanisms underlying these crops' responses to ENR remain limited.

View Article and Find Full Text PDF

Exploring the synergistic effects of soil nutrients, rhizosphere fungi, and endophytic fungi on the shaping of root metabolites in Angelica sinensis (Oliv.) Diels.

Fungal Biol

February 2025

School of Agricultural and Biological Engineering, Longdong University, Qingyang, 745000, China; Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, 745000, China.

The root of Angelica sinensis (Oliv.) Diels (Ang) is a bulk Chinese herbal medicine, and the microecological regulation is a sustainable means to enhance its quality. In this study, Angs at five bases (LZ, XZ, QS, PM, MZC) in Minxian County, Gansu Province were taken as the research objects.

View Article and Find Full Text PDF

Physiological and multi-omics analysis revealed the mechanism of arbuscular mycorrhizal fungi to cadmium toxicity in green onion.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Cadmium (Cd) is a highly toxic agricultural pollutant that inhibits the growth and development of plants. Arbuscular mycorrhizal fungi (AMF) can enhance plant tolerance to Cd, but the regulatory mechanisms in Allium fistulosum (green onion) are unclear. This study used a Cd treatment concentration of 1.

View Article and Find Full Text PDF

Plants are often exposed to combined stress, e.g. heat and cadmium (Cd) stress under natural conditions.

View Article and Find Full Text PDF

Carrot callus grown on a medium with increased nitrogen have reduced carotenoid accumulation, changed gene expression, high amount of vesicular plastids and altered cell wall composition. Carotenoid biosynthesis is vital for plant development and quality, yet its regulation under varying nutrient conditions remains unclear. To explore the effects of nitrogen (N) availability, we used carrot (Daucus carota L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!