Molecular data have proved useful as an alternative to morphological data in showing the relationships of genera within the phylum Microsporidia, but until now have been available only for ribosomal genes. In previous studies protein-coding genes of microsporidia have been used only to assess their position in the evolution of eukaryotes. For the first time we report on the use of a protein-coding gene, the A-G region of the largest subunit of RNA polymerase II (RPB1) from 14 mainly polysporous species, to generate an alternative phylogeny for microsporidia. Using the amino acid sequences, the genera and species fell into the same main groupings as had been obtained with 16S rDNA sequences, but the RPB1 data provided better resolution within these groups. The results supported the pairings of Trachipleistophora hominis with Vavraia culicis and Pleistophora hippoglossoideos with Pleistophora typicalis. They also confirmed that the genus Pleistophora is not monophyletic and that it will be necessary to transfer Pleistophora ovariae and Pleistophora mirandellae into one or more other genera, as has already been effected for Pleistophora anguillarum.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1550-7408.2001.tb00422.xDOI Listing

Publication Analysis

Top Keywords

largest subunit
8
subunit rna
8
rna polymerase
8
polymerase rpb1
8
pleistophora
6
genera
5
relationships microsporidian
4
microsporidian genera
4
genera emphasis
4
emphasis polysporous
4

Similar Publications

sp. nov., a new hyphomycete from desertified rocky soil in southwest China.

Int J Syst Evol Microbiol

January 2025

Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, PR China.

Two strains of , identified based on morphology and phylogenetic analysis, were isolated from rocky desertification soils in Yunnan province. Phylogenetic analyses inferred from three loci (the internal transcribed spacer of the nuclear ribosomal RNA gene, β-tubulin and RNA polymerase II second-largest subunit) showed that the two strains formed a single clade and were introduced as a new species of , is characterized by having ampulliform or broadly fusiform conidiogenous cells and dark olivaceous-green, oblong-ellipsoidal conidia. Phylogenetically, is most closely related to , but it distinguishes the latter by longer and narrower conidia.

View Article and Find Full Text PDF

Aggressiveness and phylogenetic relationship of associated with crown and root rot in pyrethrum plants.

Plant Dis

January 2025

The University of Melbourne, Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, Parkville, Victoria, Australia;

In Australia, pyrethrum (Tanacetum cinerariifolium) cultivation provides a significant portion of the global supply of natural insecticidal pyrethrins. However, crown and root rots, along with stunted plant growth and plant loss during winter, are significant issues affecting certain sites. Several isolates of the Fusarium oxysporum species complex (FOSC) have been identified as causal agents of crown and root rot in pyrethrum, highlighting these as key pathogens contributing to this decline.

View Article and Find Full Text PDF

Morphological and phylogenetic analyses reveal two new species of the (Hypocreales, Nectriaceae) species complex in China.

MycoKeys

January 2025

The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China Beijing Forestry University Beijing China.

The species complex (FFSC) encompasses a diverse array of more than 80 phylogenetic species with both phytopathological and clinical importance. A stable taxonomy is crucial for species in the FFSC due to their economical relevance. Fungal strains used in this study were obtained from and , collected from Beijing and Shaanxi Province.

View Article and Find Full Text PDF

The COP9 signalosome (CSN) is a highly conserved multi-subunit protein complex, with CSN1 being its largest and most conserved subunit. The N-terminal function of CSN1 plays a pivotal and intricate role in plant photomorphogenesis and seedling development. Moreover, CSN is essential for far-red light-mediated photomorphogenesis in seedlings, but the function of OsCSN1 in seedling growth and development under far-red light conditions has not been determined.

View Article and Find Full Text PDF

Molecular Phylogenetics and Estimation of Evolutionary Divergence and Biogeography of the Family Cordycipitaceae (Ascomycota, Hypocreales).

J Fungi (Basel)

January 2025

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

The Cordycipitaceae family of insecticidal fungi is widely distributed in nature, is the most complex in the order Hypocreales (Ascomycota), with members displaying a diversity of morphological characteristics and insect host ranges. Based on Bayesian evolutionary analysis of five genomic loci(the small subunit of ribosomal RNA (SSU) gene, the large subunit of ribosomal RNA (LSU) gene, the translation elongation factor 1-α () gene, the largest subunit of RNA polymerase II (), and the second largest subunit of RNA polymerase II (), we inferred the divergence times for members of the Cordycipitaceae, improving the internal phylogeny of this fungal family. Molecular clock analyses indicate that the ancestor of occurred in the Paleogene period (34.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!