Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain.

Neurochem Int

Department of Anatomy and Cell Biology, School of Medicine, University of Minnesota, Duluth, MN 55812, USA.

Published: May 2001

Monocarboxylate transporter (MCT1) levels in brains of adult Long-Evans rats on a high-fat (ketogenic) diet were investigated using light and electron microscopic immunocytochemical methods. Rats given the ketogenic diet (91% fat and 9% protein) for up to 6 weeks had increased levels of the monocarboxylate transporter MCT1 (and of the glucose transporter GLUT1) in brain endothelial cells and neuropil compared to rats on a standard diet. In ketonemic rats, electron microscopic immunogold methods revealed an 8-fold greater MCT1 labeling in the brain endothelial cells at 4 weeks. Abluminal endothelial membranes were twice as heavily labeled as luminal membranes. In controls, luminal and abluminal labeling was not significantly different. The endothelial cytoplasmic compartment was sparsely labeled (<8% of total endothelial labeling) in all brains. Neuropil MCT1 staining was more intense throughout the brain in ketonemic rats, especially in neuropil of the molecular layer of the cerebellum, as revealed by avidin-biotin immunocytochemistry. This study demonstrates that adult rats retain the capacity to upregulate brain MCT1 levels. Furthermore, their brains react to a diet that increases monocarboxylate levels in the blood by enhancing their capability to take up both monocarboxylates (MCT1 upregulation) and glucose (GLUT1 upregulation). This may have important implications for delivery of fuel to the brain under stressful and pathological conditions, such as epilepsy and GLUT1 deficiency syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0197-0186(00)00102-9DOI Listing

Publication Analysis

Top Keywords

monocarboxylate transporter
12
transporter mct1
12
mct1 levels
8
ketogenic diet
8
electron microscopic
8
brain endothelial
8
endothelial cells
8
diet-induced ketosis
4
ketosis increases
4
increases monocarboxylate
4

Similar Publications

Glioblastoma(GBM) is a highly malignant primary central nervous system tumor that poses a significant threat to patient survival due to its treatment resistance and rapid recurrence.Current treatment options, including maximal safe surgical resection, radiotherapy, and temozolomide (TMZ) chemotherapy, have limited efficacy.In recent years, the role of glycolytic metabolic reprogramming in GBM has garnered increasing attention.

View Article and Find Full Text PDF

MCT1 lactate transporter blockade re-invigorates anti-tumor immunity through metabolic rewiring of dendritic cells in melanoma.

Nat Commun

January 2025

Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France.

Dendritic cells (DC) are key players in antitumor immune responses. Tumors exploit their plasticity to escape immune control; their aberrant surface carbohydrate patterns (e.g.

View Article and Find Full Text PDF

This study investigated the effects of bisphenol A (BPA) and the involvement of nuclear estrogen receptors (ESR) on testicular energy metabolism and spermatogenesis in zebrafish. Testes were incubated with DMSO, 10 pM or 10μM BPA for 6 or 72h, with some samples pre-incubated with the ESRα/β antagonist ICI 182,780. Gene and protein expressions were analyzed using real-time PCR and Western blot, respectively.

View Article and Find Full Text PDF

The impact of solute carrier proteins on disrupting substance regulation in metabolic disorders: insights and clinical applications.

Front Pharmacol

January 2025

Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Carbohydrates, lipids, bile acids, various inorganic salt ions and organic acids are the main nutrients or indispensable components of the human body. Dysregulation in the processes of absorption, transport, metabolism, and excretion of these metabolites can lead to the onset of severe metabolic disorders, such as type 2 diabetes, non-alcoholic fatty liver disease, gout and hyperbilirubinemia. As the second largest membrane receptor supergroup, several major families in the solute carrier (SLC) supergroup have been found to play key roles in the transport of substances such as carbohydrates, lipids, urate, bile acids, monocarboxylates and zinc ions.

View Article and Find Full Text PDF

Effects of endurance training under calorie restriction on energy substrate metabolism in mouse skeletal muscle and liver.

J Physiol Sci

January 2025

Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, 153-8902, Tokyo, Japan.

We investigated whether calorie restriction (CR) enhances metabolic adaptations to endurance training (ET). Ten-week-old male Institute of Cancer Research (ICR) mice were fed ad libitum or subjected to 30% CR. The mice were subdivided into sedentary and ET groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!