Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay.

Proc Natl Acad Sci U S A

Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, Institut National de la Santé et de la Recherche Médicale Unité 201, Centre National de la Recherche Scientifique Unité Mixte 8646, 43 Rue Cuvier, 75005 Paris, France.

Published: March 2001

AI Article Synopsis

  • Telomerase activity reactivation in cancer cells makes it a promising target for new anticancer treatments, with telomerase inhibitors being explored as potential drugs.
  • Researchers used a fluorescence assay to find compounds that stabilize G-quadruplexes, unique DNA structures that can inhibit telomerase activity.
  • A specific series of compounds increased the stability of G-quadruplexes significantly, and the most effective telomerase inhibitor showed a low IC(50) value of 28 nM, indicating high potency in blocking telomerase.

Article Abstract

The reactivation of telomerase activity in most cancer cells supports the concept that telomerase is a relevant target in oncology, and telomerase inhibitors have been proposed as new potential anticancer agents. The telomeric G-rich single-stranded DNA can adopt in vitro an intramolecular quadruplex structure, which has been shown to inhibit telomerase activity. We used a fluorescence assay to identify molecules that stabilize G-quadruplexes. Intramolecular folding of an oligonucleotide with four repeats of the human telomeric sequence into a G-quadruplex structure led to fluorescence excitation energy transfer between a donor (fluorescein) and an acceptor (tetramethylrhodamine) covalently attached to the 5' and 3' ends of the oligonucleotide, respectively. The melting of the G-quadruplex was monitored in the presence of putative G-quadruplex-binding molecules by measuring the fluorescence emission of the donor. A series of compounds (pentacyclic crescent-shaped dibenzophenanthroline derivatives) was shown to increase the melting temperature of the G-quadruplex by 2-20 degrees C at 1 microM dye concentration. This increase in T(m) value was well correlated with an increase in the efficiency of telomerase inhibition in vitro. The best telomerase inhibitor showed an IC(50) value of 28 nM in a standard telomerase repeat amplification protocol assay. Fluorescence energy transfer can thus be used to reveal the formation of four-stranded DNA structures, and its stabilization by quadruplex-binding agents, in an effort to discover new potent telomerase inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC30607PMC
http://dx.doi.org/10.1073/pnas.051620698DOI Listing

Publication Analysis

Top Keywords

telomerase inhibitors
12
telomerase
9
fluorescence assay
8
telomerase activity
8
energy transfer
8
fluorescence
5
inhibitors based
4
based quadruplex
4
quadruplex ligands
4
ligands selected
4

Similar Publications

Telomerase in cancer- ongoing quest and future discoveries.

Mol Biol Rep

January 2025

Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis.

View Article and Find Full Text PDF

This study investigates the interrelationship between human telomerase reverse transcriptase (hTERT) and ferroptosis in precursor-B (pre-B) acute lymphoblastic leukemia (ALL), specifically examining how hTERT modulation affects ferroptotic cell death pathways. Given that hTERT overexpression characterizes various cancer phenotypes and elevated telomerase activity is observed in early-stage and relapsed ALL, we investigated the molecular mechanisms linking hTERT regulation and ferroptosis in leukemia cells. The experimental design employed Nalm-6 and REH cell lines under three distinct conditions: curcumin treatment, hTERT siRNA knockdown, and their combination.

View Article and Find Full Text PDF

Background: Breast cancer, the world's most prevalent cancerous disease that threatens women, is mainly dependent upon ovarian endocrine secretion for its growth and development. Telomerase inhibitors have been widely studied for their use to treat various tumors. BIBR1591 is the first highly effective small molecule telomerase inhibitor that could inhibit telomerase of many types of cancer cells at sub micromolar concentration Aim: Our research aimed to study the molecular mechanism and action of BIBR1591, trying to understand the telomerase inhibitor in breast cancer, focusing on its ability to induce apoptosis and alter the expression of specific genes.

View Article and Find Full Text PDF

In this current work, we dedicated efforts to designing and synthesizing new 1,2,3-triazole-analogues (5a-d), (6a-d), and (7a-c) to act as dual VEGFR-2 and telomerase inhibitors with promising apoptotic potential. The synthesized analogues were examined against eleven diverse types of cancer cells and two normal cells to assess their ability to inhibit cell growth (GI%). Obviously, compound 7b showed the best average GI% (75.

View Article and Find Full Text PDF

Background: Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high morbidity and mortality, and easy to develop resistance to chemotherapeutic agents. Telomeres are DNA-protein complexes located at the termini of chromosomes in eukaryotic cells, which are unreplaceable in maintaining the stability and integrity of genome. Telomerase, an RNA-dependent DNA polymerase, play vital role in telomere length maintain, targeting telomerase is a promising therapeutic strategy for cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!