Chemical contents of bile was studied in 38 patients with cholelithic disease after conduction of cholecystectomy. It was established that in up to 4 weeks after the operation bile has lithogenic properties. It is expedient to do the bile reinfusion through the drain into duodenum to achieve its chemical contents normalization.

Download full-text PDF

Source

Publication Analysis

Top Keywords

chemical contents
12
[aspects bile
4
bile chemical
4
contents patients
4
patients cholecystectomy]
4
cholecystectomy] chemical
4
contents bile
4
bile studied
4
studied patients
4
patients cholelithic
4

Similar Publications

The rise of antimicrobial resistance represents a significant global health threat, driven by the diminishing efficacy of existing antibiotics, a lack of novel antibacterials entering the market, and an over- or misuse of existing antibiotics, which accelerates the evolution of resistant bacterial strains. This review focuses on innovative therapies by highlighting 19 novel antibacterials in clinical development as of June 2024. These selected compounds are characterized by new chemical scaffolds, novel molecular targets, and/or unique mechanisms of action, which render their potential to break antimicrobial resistance particularly high.

View Article and Find Full Text PDF

Active targeting of type 1 diabetes therapies to pancreatic beta cells using nanocarriers.

Diabetologia

January 2025

Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA.

Type 1 diabetes is an autoimmune disease characterised by the destruction of pancreatic beta cells, resulting in lifelong insulin dependence. Although exogenous insulin can maintain glycaemic control, this approach does not protect residual or replacement pancreatic beta cells from immune-mediated death. Current therapeutics designed to protect functional beta cell mass or promote beta cell proliferation and regeneration can have off-target effects, resulting in higher dose requirements and adverse side effects.

View Article and Find Full Text PDF

Electrolyte engineering has emerged as an effective strategy for stabilizing Zn-metal anodes. However, a single solute or solvent additive is far from sufficient to meet the requirements for electrolyte cycling stability. Here, we report a new-type high-entropy electrolyte composed of equal molar amounts of Zn(OTf)2 and LiOTf, along with equal volumes of H2O, triethyl phosphate, and dimethyl sulfoxide, which enhances electrolyte stability by increasing solvation entropy.

View Article and Find Full Text PDF

Whole-Heart Histological and CMR Validation of Electroanatomic Mapping by Multielectrode Catheters in an Ovine Model.

JACC Clin Electrophysiol

January 2025

Department of Cardiology, Westmead Hospital, Sydney, New South Wales, Australia; Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia. Electronic address:

Background: Accurate electroanatomic mapping is critical for identifying scar and the long-term success of ventricular tachycardia ablation.

Objectives: This study sought to determine the accuracy of multielectrode mapping (MEM) catheters to identify scar on cardiac magnetic resonance (CMR) and histopathology.

Methods: In an ovine model of myocardial infarction, we examined the effect of electrode size, spacing, and mapping rhythm on scar identification compared to CMR and histopathology using 5 multielectrode mapping catheters.

View Article and Find Full Text PDF

Background: Acute decompensated heart failure (ADHF) leads to hospitalizations and functional decline in older adults. Although cardiac rehabilitation (CR) is effective for stable heart failure, its impact on ADHF patients, particularly those without frailty, is unclear.

Objectives: The goal of this study was to evaluate the efficacy and safety of early in-hospital CR for patients hospitalized with ADHF who are not frail.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!