Caveolae, specialised regions of the cell membrane which have been detected in a wide range of mammalian cells, have not been described in bone cells. They are plasmalemmal invaginations, 50 to 100 nm in size, characterised by the presence of the structural protein, caveolin, which exists as three subtypes. Caveolin-1 and caveolin-2 are expressed in a wide range of cell types whereas caveolin-3 is thought to be a muscle-specific subtype. There is little information on the precise function of caveolae, but it has been proposed that they play an important role in signal transduction. As the principal bone-producing cell, the osteoblast has been widely studied in an effort to understand the signalling pathways by which it responds to extracellular stimuli. Our aim in this study was to identify caveolae and their structural protein caveolin in normal human osteoblasts, and to determine which subtypes of caveolin were present. Confocal microscopy showed staining which was associated with the plasma membrane. Transmission electron microscopy revealed the presence of membrane invaginations of 50 to 100 nm, consistent with the appearance of caveolae. Finally, we isolated protein from these osteoblasts, and performed Western blotting using anti-caveolin primary antibodies. This revealed the presence of caveolin-1 and -2, while caveolin-3 was absent. The identification of these structures and their associated protein may provide a significant contribution to our further understanding of signal transduction pathways in osteoblasts.

Download full-text PDF

Source
http://dx.doi.org/10.1302/0301-620x.83b1.10604DOI Listing

Publication Analysis

Top Keywords

caveolin normal
8
normal human
8
human osteoblasts
8
wide range
8
invaginations 100
8
structural protein
8
protein caveolin
8
signal transduction
8
revealed presence
8
identification caveolae
4

Similar Publications

Next-generation cancer phenomics by deployment of multiple molecular endophenotypes coupled with high-throughput analyses of gene expression offer veritable opportunities for triangulation of discovery findings in non-small cell lung cancer (NSCLC) research. This study reports differentially expressed genes in NSCLC using publicly available datasets (GSE18842 and GSE229253), uncovering 130 common genes that may potentially represent crucial molecular signatures of NSCLC. Additionally, network analyses by GeneMANIA and STRING revealed significant coexpression and interaction patterns among these genes, with four notable hub genes-, , and -identified as pivotal in NSCLC progression.

View Article and Find Full Text PDF

Ferroptosis plays a role in tumorigenesis by affecting lipid peroxidation and metabolic pathways; however, its prognostic or therapeutic relevance in pancreatic adenocarcinoma (PAAD) remains poorly understood. In this study, we developed a prognostic ferroptosis-related gene (FRG)-based risk model using cohorts of The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), proposing plausible therapeutics. Differentially expressed FRGs between tumors from TCGA-PAAD and normal pancreatic tissues from Genotype-Tissue Expression were analyzed to construct a prognostic risk model using univariate and multivariate Cox regression and LASSO analyses.

View Article and Find Full Text PDF
Article Synopsis
  • Adipose dystrophy (lipodystrophy) involves the loss of fat tissue, potentially causing fat to accumulate in other body areas and leading to metabolic issues like insulin resistance and liver disease.
  • The condition is linked to several gene mutations and can be either congenital or acquired, presenting in different forms.
  • This report details a rare case of localized lipodystrophy with normal development and partial fat atrophy, aimed at improving clinicians' knowledge of this uncommon disease.
View Article and Find Full Text PDF

The effects of ligand distribution and density on the targeting properties of dual-targeting folate/biotin Pluronic F127/Poly (lactic acid) polymersomes.

Eur J Pharm Biopharm

January 2025

School of Life Science, Jiangxi Science and Technology Normal University, Jiangxi Key Laboratory of Natural Microbial Medicine Research, Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Nanchang 330013, China. Electronic address:

Article Synopsis
  • Dual-targeting polymersomes with biotin and folic acid were designed to improve targeting and anti-tumor effects in human ovarian cancer cells (OVCAR-3) compared to single-ligand systems.
  • Two types of polymersomes were tested: one with both ligands in the same polymersome (BT/FA-F127-PLA) and one with ligands in separate polymersomes ((BT + FA)-F127-PLA), with the former showing better cell targeting and drug delivery results.
  • The study found that effective cellular targeting is influenced by the ligands' ratio and the mechanisms of endocytosis, with optimal targeting achieved at a 7.5% biotin to 7.5%
View Article and Find Full Text PDF
Article Synopsis
  • Increased blood-brain barrier (BBB) permeability is linked to major depressive disorder (MDD), and this study examines how aerobic exercise may help protect BBB integrity and alleviate MDD symptoms.
  • The research involved male mice subjected to chronic unpredictable stress (CUS) to model MDD, with three groups: control, CUS, and CUS+Exercise, assessing various biological and behavioral factors.
  • Results indicated that CUS heightened BBB permeability and behavioral symptoms, but aerobic exercise improved these conditions by reducing inflammatory factors and restoring BBB function, suggesting it may be a viable treatment option for MDD.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!