GafChromic (MD-55-2) radiochromic film has become increasingly popular for medical applications and has proven to be useful for brachytherapy dosimetry. To measure the absolute dose near a brachytherapy source, the response of the proposed detector in the measurement conditions relative to the response of the detector in calibration conditions must be known. MD-55-2 radiochromic film has been exposed in four different photon beams, a 30 and 40 kVp tungsten anode x-ray beam, a 75 kVp orthovoltage therapy beam, and a 60Co teletherapy beam to measure the relative detector response. These measurements were combined with coupled photon/electron Monte Carlo transport calculations to determine the absolute detector response. The Los Alamos National Laboratory Monte Carlo transport code MCNP4B2 was used. The measured relative response of this batch of MD-55-2 film varies from 8.79 mOD/Gy, measured for the 60Co beam, by as much as 42% for the low-energy x-ray beams. However, the absolute detector response varies from 4.32 mOD/Gy for the 60Co beam by, at most, only 6.3%. In this work we demonstrate that the absolute detector response of MD-55-2 radiochromic film is a constant and independent of beam quality. Further, this work shows that MCNP4B2 accurately simulates the energy response and geometry artifacts of the radiochromic film.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.1333412DOI Listing

Publication Analysis

Top Keywords

detector response
20
radiochromic film
20
absolute detector
16
monte carlo
12
md-55-2 radiochromic
12
response
9
calculations determine
8
determine absolute
8
brachytherapy dosimetry
8
relative response
8

Similar Publications

Use of Resonant Acoustic Fields as Atmospheric-Pressure Ion Gates.

Anal Chem

January 2025

Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.

Ion optics are crucial for spectrometric methods such as mass spectrometry (MS) and ion mobility spectrometry (IMS). Among the wide selection of ion optics, temporal ion gates are of particular importance for time-of-flight MS (TOF-MS) and drift-tube IMS. Commonly implemented as electrostatic ion gates, these optics offer a rapid, efficient means to block ion beams and form discrete ion packets for subsequent analysis.

View Article and Find Full Text PDF

The mid-wave multispectral detector combines the traditional spectrometer and infrared detector technologies to provide image information and spectral information at the same time, which has an important role in both civil and military fields. To solve the working band limitation and low energy utilization, this paper presents an integrated superlattice mid-wave multispectral hypersurface detector that can be used for computational multispectroscopy for the first time, which consists of photonic crystal (PC) plates of GaSb material, and uses PC microstructures to modulate the incident spectra, which can be used to reconstruct incident signals with computational multispectroscopy methods. In this paper, the finite difference time domain method (FDTD) is used to simulate the structural parameters of different PCs, and finally calculate the correlation coefficients of the transmission spectra of the different structures as well as the energy utilization rate.

View Article and Find Full Text PDF

A Spiropyran-Based Hydrogel Composite for Wearable Detectors to Monitor Visible Light Intensity to Prevent Myopia.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 928 Second Avenue, 310018 Hangzhou, China.

A wearable detector to monitor visible light intensity is realized by the restrained photochromism of a hydrogel composite containing light-responsive spiropyran with hydroxyl groups (SPOH). When exposed to visible light, the SPOH experiences a ring-opening to a ring-closed transition accompanied by discoloration from red to yellow. Unlike in the solution, the photochromism/discoloration rate is strongly correlated to the cross-linking points.

View Article and Find Full Text PDF

Halide perovskites, a game changer for future medical imaging technology.

Biophys Rev (Melville)

March 2025

School of Physics, Australian Centre for Microscopy and Microanalysis, Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.

The accurate detection of x-rays enables broad applications in various fields, including medical radiography, safety and security screening, and nondestructive inspection. Medical imaging procedures require the x-ray detection devices operating with low doses and high efficiency to reduce radiation health risks, as well as expect the flexible or wearable ones that offer more comfortable and accurate diagnosis experiences. Recently, halide perovskites have shown promising potential in high-performance, cost-effective x-ray detection owing to their attractive features, such as strong x-ray absorption, high-mobility-lifetime product, tunable bandgap, fast response, as well as low-cost raw materials, facile processing, and excellent flexibility.

View Article and Find Full Text PDF

The BioSentinel CubeSat was deployed on the Artemis-I mission in November 2022 and has been continuously transmitting physical measurements of the space radiation environment since that time. Just before mission launch, we published computational model predictions of the galactic cosmic ray exposure expected inside BioSentinel for multiple locations and configurations. The predictions utilized models for the ambient galactic cosmic ray environment, radiation physics and transport, and BioSentinel geometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!