Objective: Thrombospondin-1 (TSP-1), an acute-phase reactant implicated in vascular disease, is a 420-kd multifunctional glycoprotein chemotactic for vascular smooth muscle cells (VSMCs). TSP-1 has six domains of repeating homologous amino acid sequences: N-terminal, procollagen homology, type 1 repeat, type 2 repeat, type 3 repeat/RGD (T3), and C-terminal (COOH). The purpose of this experiment was to determine which domains of TSP-1 induce VSMC chemotaxis.
Methods: A modified Boyden Chamber chemotaxis assay was used to assess VSMC migration. Serum-free medium, TSP-1, or each of the fusion proteins (10 and 20 microg/mL) synthesized for the different domains were placed in the bottom wells. Quiescent bovine aortic VSMCs (50,000) were placed in the top wells. After 4 hours at 37 degrees C, migrated VSMCs were recorded as cells per five fields (400x) and analyzed with the paired t test. To verify the fusion protein data, we performed chemotaxis assays with antibodies to each of the domains (25 microg/mL) combined with TSP-1 (20 microg/mL) in the bottom wells and VSMCs in the top wells.
Results: The COOH domain significantly stimulated VSMC chemotaxis (P = <.001). To a lesser extent, the N-terminal and T3 domains also induced chemotaxis (P <.05). However, only the anti-COOH antibody (C6.7) and the anti-integrin-associated protein portion of COOH antibody (D4.6) significantly inhibited TSP-1-induced VSMC chemotaxis (by 85% and 92%, respectively).
Conclusions: These results implicate the COOH domain as the portion of the TSP-1 molecule primarily responsible for VSMC chemotaxis. This experiment suggests that future strategies in the prevention of VSMC migration, an initial step in the development of vascular lesions, may involve selective inhibition of the COOH domain of TSP-1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1067/mva.2001.112318 | DOI Listing |
Commun Biol
January 2025
Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.
Aberrant autophagy in vascular smooth muscle cells (VSMCs) is associated with the progression of vascular remodeling diseases caused by neointimal hyperplasia. Platelet-derived growth factor-BB (PDGF-BB)-induced vascular remodeling is accompanied by autophagy activation, however, the involvement of circular RNAs (circRNAs) remains unclear. Here, we show the role of PDGF-BB-regulated hsa_circ_0001304 (circ-1304) in neointimal hyperplasia and its potential involvement in VSMC autophagy, while also elucidating the potential mechanisms.
View Article and Find Full Text PDFSci Rep
January 2025
General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China.
The inflammatory response of lung tissue and abnormal proliferation of pulmonary artery smooth muscle cells are involved in the pathogenesis of high-altitude pulmonary hypertension (HAPH). Halofuginone (HF), an active ingredient derivative of Chang Shan (Dichroa febrifuga Lour. [Hydrangeaceae]), has antiproliferative, antihypertrophic, antifibrotic, and other effects, but its protective effects on HAPH remains unclear.
View Article and Find Full Text PDFGene
January 2025
Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine/The First Affiliated Hospital, Shihezi University, Shihezi 832002 China; Department of Pathology, Central People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 524000 Guangdong, China. Electronic address:
Background: In-stent restenosis (ISR) is one of the most significant complications following percutaneous coronary intervention (PCI) in patients with coronary artery disease (CAD). Ferroptosis is a novel cell death mode characterized by iron overload and lipid peroxidation. However, the role of ferroptosis in vascular smooth muscle cells (VSMCs) regulating neointimal formation during restenosis remains unclear.
View Article and Find Full Text PDFRedox Biol
January 2025
Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, USA. Electronic address:
Repeated use of nitroglycerin results in a loss of its vasodilatory efficacy which limits its clinical use for the treatment of angina pectoris. This tolerance phenomenon is a defining characteristic of all compounds classified as nitrodilators, which includes NTG as well as S-nitrosothiols and dinitrosyl iron complexes. These compounds vasodilate via activation of soluble guanylate cyclase, although they do not release requisite amounts of free nitric oxide (NO) and some do not even cross the plasma membrane.
View Article and Find Full Text PDFHypertension
January 2025
Cardiology Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA. (X.Z., Q.X., A.V., Z.L.).
Background: Recent studies show that hyperactivation of mTOR (mammalian target of rapamycin) signaling plays a causal role in the development of thoracic aortic aneurysm and dissection. Modulation of PP2A (protein phosphatase 2A) activity has been shown to be of significant therapeutic value. In light of the effects that PP2A can exert on the mTOR pathway, we hypothesized that PP2A activation by small-molecule activators of PP2A could mitigate AA progression in Marfan syndrome (MFS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!