Hypocotyl cuttings (from 20- and 50-day-old Pinus taeda L. seedlings) rooted readily within 30 days in response to exogenous auxin, while epicotyl cuttings (from 50-day-old seedlings) rarely formed roots within 60 days. Responses to auxin during adventitious rooting included the induction of cell reorganization and cell division, followed by the organization of the root meristem. Explants from the bases of both epicotyl and hypocotyl cuttings readily formed callus tissue in response to a variety of auxins, but did not organize root meristems. Auxin-induced cell division was observed in the cambial region within 4 days, and later spread to the outer cortex at the same rate in both tissues. Cells at locations that would normally form roots in foliated hypocotyl cuttings did not produce callus any differently than those in other parts of the cortex. Therefore, auxin-induced root meristem organization appeared to occur independently of auxin-induced cell reorganization/division. The observation that N-(1-naphthyl)phthalamic acid (NPA) promoted cellular reorganization and callus formation but delayed rooting implies the existence of an auxin signal transduction pathway that is specific to root meristem organization. Attempts to induce root formation in callus or explants without foliage were unsuccessful. Both the cotyledon and epicotyl foliage provided a light-dependent product other than auxin that promoted root meristem formation in hypocotyl cuttings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1034/j.1399-3054.2001.1110315.x | DOI Listing |
Plant Cell Environ
October 2024
State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
Plants, being immobile, are exposed to environmental adversities such as wind, snow and animals that damage their structure, making regeneration essential for their survival. The adventitious roots (ARs) primarily emerge from a detached explant to uptake nutrients; therefore, the molecular network involved in their regeneration needs to be explored. DNA methylation, a key epigenetic mark, influences molecular pathways, and recent studies suggested its role in regeneration.
View Article and Find Full Text PDFPlant Dis
July 2024
University of Sao Paulo Luiz de Queiroz College of Agriculture, Plant Pathology and Nematology, Piracicaba, São Paulo, Brazil;
Plant Methods
March 2023
Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China.
Background: Root-knot nematodes (RKNs) pose a worldwide threat to agriculture of many crops including cucumber. Genetic transformation (GT) has emerged as a powerful tool for exploration of plant-RKN interactions and genetic improvement of RKN resistance. However, it is usually difficult to achieve a highly efficient and stable GT protocol for most crops due to the complexity of this process.
View Article and Find Full Text PDFSci Rep
August 2022
Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387, Cracow, Poland.
The study focuses on the propagation of a rare and endangered plant species (Pulsatilla patens) to re-introduce an extinct population from calamine area in Southern Poland. The plants were propagated from seeds, rhizome cuttings, or regenerated in vitro from shoot tips, hypocotyls with roots or cotyledons of seedlings on Murashige & Skoog (MS) medium supplemented with 0.25 or 0.
View Article and Find Full Text PDFFront Plant Sci
December 2020
Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
Plant grafting, the ancient practice of cutting and joining different plants, is gaining popularity as an elegant way to generate chimeras that combine desirable traits. Grafting was originally developed in woody species, but the technique has evolved over the past century to now encompass a large number of herbaceous species. The use of plant grafting in science is accelerating in part due to the innovative techniques developed for the model plant .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!