As a consequence of its characterization using both in vitro and knockout mouse models, the myeloid-specific transcription factor, CCAAT/enhancer binding protein (C/EBP)epsilon, has been identified as a critical regulator of terminal granulopoiesis and one of the causative mutations in the human disease, neutrophil-specific granule deficiency. C/EBPs are a family of transcription factors sharing numerous structural and functional features and to date include C/EBPalpha, -beta, -gamma, -delta, -epsilon, and -zeta. C/EBPalpha was the first family member isolated and characterized, its essential role in hepatocyte and adipocyte differentiation demonstrated in knockout mouse models. Subsequent analysis of the hematopoietic elements in fetal mouse liver revealed its critical role in myelopoiesis. Understanding the role of C/EBPepsilon in terminal granulopoiesis in the context of other known transcription factors is ongoing with analysis of deficient and conditionally expressing cell lines and knockout models. Mouse models with targeted gene disruptions have contributed greatly to our understanding of the transcriptional regulation of granulopoiesis. Further manipulation of these models and other conditional expression systems have bypassed some of the limitations of knockout models and helped delineate the interactions of different transcription factors in affecting granulocyte development. Phenotypic expression of the loss of C/EBPepsilon in mice is extreme, resembling absolute neutropenia with systemic infection with P. aeruginosa. Future work will need to explore the regulation of C/EBPepsilon expression, its functional interactions with other transcriptional regulators such as PU.1, and its role in monocyte differentiation and function in the mouse.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1634/stemcells.19-2-125 | DOI Listing |
J Leukoc Biol
January 2025
Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA.
Regulated sequential exocytosis of neutrophil granules is essential in orchestrating the innate immune response, while uncontrolled secretion causes inflammation. We developed and characterized Nexinhib20, a small-molecule inhibitor that targets azurophilic granule exocytosis in neutrophils by blocking the interaction between the small GTPase Rab27a and its effector JFC1. Its therapeutic potential has been demonstrated in several pre-clinical models of inflammatory disease.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China.
Chromobox 2 (CBX2), a crucial component of the polycomb repressive complex (PRC), has been implicated in the development of various human cancers. However, its role in the regulation of tumor immunogenicity and immune evasion remains inadequately understood. In this study, we found that ablation of CBX2 led to tumor growth inhibition, activation of the tumor immune microenvironment, and enhanced therapeutic efficacy of anti-PD1 or adoptive T cell therapies by using murine syngeneic tumor models.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218.
The hippocampal dentate gyrus (DG) is thought to orthogonalize inputs from the entorhinal cortex (pattern separation) and relay this information to the CA3 region. In turn, attractor dynamics in CA3 perform a pattern completion or error correction operation before sending its output to CA1. In a mouse model of congenital hypoplasia of the DG, a deficiency in the (Wls) gene, specifically in cells expressing , which targets neuronal progenitors, led to an almost total absence of dentate granule cells and modestly impaired performance in spatial tasks.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO 65211.
Understanding how epithelial cells in the female reproductive tract (FRT) differentiate is crucial for reproductive health, yet the underlying mechanisms remain poorly defined. At birth, FRT epithelium is highly malleable, allowing differentiation into various epithelial types, but the regulatory pathways guiding these early cell fate decisions are unclear. Here, we use neonatal mouse endometrial organoids and assembloid coculture models to investigate how innate cellular plasticity and external mesenchymal signals influence epithelial differentiation.
View Article and Find Full Text PDFScience
January 2025
Department of Genome Sciences, University of Washington, Seattle, WA, USA.
Studying the functional consequences of structural variants (SVs) in mammalian genomes is challenging because (i) SVs arise much less commonly than single-nucleotide variants or small indels and (ii) methods to generate, map, and characterize SVs in model systems are underdeveloped. To address these challenges, we developed Genome-Shuffle-seq, a method that enables the multiplex generation and mapping of thousands of SVs (deletions, inversions, translocations, and extrachromosomal circles) throughout mammalian genomes. We also demonstrate the co-capture of SV identity with single-cell transcriptomes, facilitating the measurement of SV impact on gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!