A genomic perspective on membrane compartment organization.

Nature

Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, California 94305-5426, USA.

Published: February 2001

Now that whole genome sequences are available for many eukaryotic organisms from yeast to man, we can form broad hypotheses on the basis of the relative expansion of protein families. To investigate the molecular mechanisms responsible for the organization of membrane compartments, we identified members of the SNARE, coat complex, Rab and Sec1 protein families in four eukaryotic genomes. Of these families only the Rab family expanded from the unicellular yeast to the multicellular fly and worm. All families were expanded in humans, where we find 35 SNAREs, 60 Rabs and 53 coat complex subunits. In addition, we were able to resolve the SNARE class of proteins into four distinct subfamilies.

Download full-text PDF

Source
http://dx.doi.org/10.1038/35057024DOI Listing

Publication Analysis

Top Keywords

protein families
8
coat complex
8
genomic perspective
4
perspective membrane
4
membrane compartment
4
compartment organization
4
organization genome
4
genome sequences
4
sequences eukaryotic
4
eukaryotic organisms
4

Similar Publications

Assembly and comparative analysis of the complete mitogenome of var. , an exceptional berry plant possessing sweet leaves.

Front Plant Sci

December 2024

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou, China.

var. is a special berry plant of in the Rosaceae family. Its leaves contain high-sweetness, low-calorie, and non-toxic sweet ingredients, known as rubusoside.

View Article and Find Full Text PDF

Background: Lung cancer screening recommendations employ annual frequency for eligible individuals, despite evidence that it may not be universally optimal. The impact of imposing a structure on the screening frequency remains unknown. The ENGAGE framework, a validated framework that offers fully dynamic, analytically optimal, personalised lung cancer screening recommendations, could be used to assess the impact of screening structure on the effectiveness and efficiency of lung cancer screening.

View Article and Find Full Text PDF

Background: Cardiomyopathy is a disease that affects the myocardium and can be classified as dilated, restrictive, or hypertrophic cardiomyopathy. Among the subtypes, restrictive cardiomyopathy is characterized by restriction of ventricular filling and its uncommon cause is a disease due to mutation on Filamin C (FLNC) gene. Filamin C is an actin-binding protein encoded by FLNC gene and participates in sarcomere stability maintenance, which is expressed on the striated muscle.

View Article and Find Full Text PDF

B7-H3 (CD276), a member of the B7-family of immune checkpoint proteins, has been shown to have immunological and non-immunological effects promoting tumorigenesis [1, 2] and expression correlates with poor prognosis for many solid tumors, including cervical, ovarian and breast cancers [3-6]. We recently identified a tumor-cell autochthonous tumorigenic role for dimerization of the 4Ig isoform of B7-H3 (4Ig-B7-H3) [7], where 4Ig-B7-H3 dimerization activated tumor-intrinsic cellular proliferation and tumorigenesis pathways, providing a novel opportunity for therapeutic intervention. Herein, a live cell split-luciferase complementation strategy was used to visualize 4Ig-B7-H3 homodimerization in a high-throughput small molecule screen (HTS) to identify modulators of this protein-protein interaction (PPI).

View Article and Find Full Text PDF

Neurons use cell-adhesion molecules (CAMs) to interact with other neurons and the extracellular environment: the combination of CAMs specifies migration patterns, neuronal morphologies, and synaptic connections across diverse neuron types. Yet little is known regarding the intracellular signaling cascade mediating the CAM recognitions at the cell surface across different neuron types. In this study, we investigated the neural developmental role of Afadin , a cytosolic adapter protein that connects multiple CAM families to intracellular F-actin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!