Background: Recently, we showed that, in addition to cytochrome P-4502E1 (CYP2E1), CYP1A2 and CYP3A4 also contribute to the microsomal ethanol oxidizing system (MEOS). When MEOS activity is measured, sodium azide commonly is used to block the contaminating catalase. However, although CYP2E1 is considered insensitive to azide, its effect on the other P-450s is unknown. Therefore, the aim of the present study was to determine the effect of azide on human recombinant and hepatic CYP2E1, CYP1A2, and CYP3A4.
Methods And Results: Concentrations of sodium azide as low as 0.1 mM markedly inhibited the specific ethanol oxidation (mean +/- SEM) by recombinant CYP1A2 and CYP3A4 expressed in HepG2 cells (to 16 +/- 1% and 22 +/- 2% of control without azide, respectively; p < 0.01). By contrast, the specific activity of CYP2E1 was only slightly (and not significantly) inhibited at this azide concentration (to 79 +/- 12% of control). Similarly, in human liver microsomes (n = 6), 0.1 mM azide strongly inhibited CYP1A2-dependent (to 25 +/- 2%) and CYP3A4-dependent (to 15 +/- 2%) ethanol oxidation, whereas CYP2E1 was inhibited only at 10 mM azide (to 60 +/- 10%). Azide also strongly affected the apparent kinetic values of all three isoenzymes. Furthermore, azide inhibited the specific monooxygenase activities, both by recombinant and microsomal P-450s. CYP2E1-specific p-nitrophenol hydroxylation was the most sensitive to azide, whereas CYP1A2-dependent 7-methoxyresorufin O-dealkylation was only slightly inhibited. Judging from its effect on p-nitrophenol hydroxylation by human liver microsomes, the inhibition of azide was competitive (Ki 0.09 mM).
Conclusions: Sodium azide at a concentration as low as 0.1 mM inhibited ethanol oxidation by CYP1A2 and CYP3A4. With CYP2E1, although oxidation of 50 mM ethanol was not inhibited by 0.1 mM azide, higher azide concentrations were inhibitory and 0.1 mM azide seemed to affect the kinetics of ethanol oxidation by CYP2E1. Therefore, azide should be avoided when measuring the MEOS activity because it may lead to underestimation, especially of CYP1A2- and CYP3A4-dependent ethanol oxidation.
Download full-text PDF |
Source |
---|
PLoS One
January 2025
Institute of Natural Antioxidants and Anti-Inflammation, Dali University, Dali, Yunnan, China.
Oxidative damage, oxidative inflammation, and a range of downstream diseases represent significant threats to human health. The application of natural antioxidants and anti-inflammatory agents can help prevent and mitigate these associated diseases. In this study, we aimed to investigate the effectiveness of walnut green husk (WNGH) as an antioxidant and anti-inflammatory agent in an in vitro setting.
View Article and Find Full Text PDFJ Insect Sci
January 2025
Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, McMinnville, TN, USA.
The role of flood and drought stress on Xylosandrus ambrosia beetle attacks and colonization in nursery trees with varying levels of water stress tolerance has not yet been studied. This study aimed to examine ambrosia beetle preference for tree species varying in their tolerance to water stress. Container-grown dogwoods, redbuds, and red maples were exposed to flood, drought, or sufficient water treatments for 28 d and beetle attacks were counted every third day.
View Article and Find Full Text PDFPeerJ
January 2025
Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China.
Background: The objective of the present study is to examine the total phenolic and flavonoid content of an ethanol extract of and to evaluate its phytochemical properties, antioxidant activity, and capacity to protect DNA from damage. This pharmaceutical/food resource mushroom may serve as a novel substitute functional food for health-conscious consumers, given its promising source of phenolics and flavonoids.
Methods: ethanol extract (SEE) was evaluated for total phenolic and flavonoid contents, while UPLC-MS analysis was used for terpenoids, phenylpropanoid, flavonoids, steroidal, phenols identification, and function prediction.
Adv Mater
January 2025
Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
Electrochemical oxidation of small molecules shows great promise to substitute oxygen evolution reaction (OER) or hydrogen oxidation reaction (HOR) to enhance reaction kinetics and reduce energy consumption, as well as produce high-valued chemicals or serve as fuels. For these oxidation reactions, high-valence metal sites generated at oxidative potentials are typically considered as active sites to trigger the oxidation process of small molecules. Isolated atom site catalysts (IASCs) have been developed as an ideal system to precisely regulate the oxidation state and coordination environment of single-metal centers, and thus optimize their catalytic property.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032,P. R. China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China. Electronic address:
Oxidative stress induced by excess ethanol is an important factor in the progression of alcoholic liver disease (ALD). In recent years, inhibiting Kelch-like ECH-associated protein 1 (KEAP1) to activate the antioxidant regulator Nuclear factor erythroid 2-related factor 2 (NRF2) has been considered an effective strategy for treating oxidative stress-related diseases, but its application in ALD remains insufficiently explored. This study aims to discover high-affinity inhibitors targeting the KEAP1 receptor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!