Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7748/ns.14.25.12.s28 | DOI Listing |
ACS Phys Chem Au
January 2025
School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany.
Many important processes in cells depend on the transfer of protons through water wires embedded in transmembrane proteins. Herein, we have performed more than 55 μs all-atom simulations of the light-harvesting complex of a diatom, i.e.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
The precise and rapid extraction of lithium from salt-lake brines is critical to meeting the global demand for lithium resources. However, it remains a major challenge to design ion-transport membranes with accurate recognition and fast transport path for the target ion. Here, we report a triazine covalent organic framework (COF) membrane with high resolution for Li and Mg that enables fast Li transport while almost completely inhibiting Mg permeation.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
Biological ion channels exhibit strong gating effects due to their zero-current closed states. However, the gating capabilities of artificial nanochannels have typically fallen short of biological channels, primarily owing to the larger nanopores that fail to completely block ion transport in the off-states. Here, we demonstrate solid-state hydrogen-bonded organic frameworks-based membranes to achieve high-performance ambient humidity-controlled proton gating, accomplished by switching the proton transport pathway instead of relying on conventional ion blockage/activation effects.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Computer Engineering, Ulsan College, Ulsan 44022, Republic of Korea.
In this paper, we propose a method for applying the -ary m-sequence as a channel-searching pattern for rendezvous in the asymmetric channel model of cognitive radio. We mathematically analyzed and calculated the ETTR when the m-sequence is applied to the conventional scheme, and our simulation results demonstrated that the ETTR performance is significantly better than that of the JS algorithm. Furthermore, we introduced a new channel-searching scheme that maximizes the benefits of the m-sequence and proposed a method to adapt the generation of the m-sequence for use in the newly proposed scheme.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
The electronic states in flat bands possess zero group velocity and null charge mobility. Recently, flat electronic bands with fully localized states have been predicted in nanowires, when their hopping integrals between first, second, and third neighbors satisfy determined relationships. Experimentally, these relationships can only be closely achieved under external pressures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!