Essential oils of Artemisia absinthium L. and Tanacetum vulgare L. were extracted by three methods, a microwave assisted process (MAP), distillation in water (DW) and direct steam distillation (DSD), and tested for their relative toxicity as contact acaricides to the two spotted spider mite, Tetranychus urticae Koch. All three extracts of A. absinthium and of T. vulgare were lethal to the spider mite but to variable degrees. The LC50 obtained from the DSD oil of A. absinthium was significantly lower (0.04 mg/cm2) than that of the MAP (0.13 mg/cm2) and DW (0.13 mg/cm2) oil of this plant species. DSD and DW extracts of T. vulgare were more toxic (75.6 and 60.4% mite mortality, respectively, at 4% concentration) to the spider mite than the MAP extract (16.7% mite mortality at 4% concentration). Chromatographic analysis indicated differences in composition between the more toxic DSD oil of A. absinthium and the other two extracts of this plant, indicating that a sesquiterpene (C15H24) compound present in the DSD oil and absent in the other two may enhance the toxicity of the DSD oil. Chemical analysis of the T. vulgare extracts indicated that beta-thujone is by far the major compound of the oil (>87.6%) and probably contributes significantly to the acaricidal activity of the oil.

Download full-text PDF

Source
http://dx.doi.org/10.1603/0022-0493-94.1.167DOI Listing

Publication Analysis

Top Keywords

dsd oil
16
spider mite
12
artemisia absinthium
8
absinthium tanacetum
8
tanacetum vulgare
8
essential oils
8
three methods
8
oil absinthium
8
013 mg/cm2
8
mite mortality
8

Similar Publications

Patients with schizophrenia have significant challenges in adhering to and complying with oral medicines, resulting in adverse consequences such as symptom worsening and psychotic relapse. This study aimed to develop clove oil-based bilosomes using definitive screening design (DSD) to maximize the anti-schizophrenic action of clozapine and promote its nose-to-brain delivery. The target was to optimize the physicochemical properties of bilosomes and incorporate them into mucoadhesive intranasal in situ gels, searching for augmented ex vivo and in vivo clozapine delivery.

View Article and Find Full Text PDF

Intrinsic dynamics of emulsions: Experiments in microgravity on the International Space Station.

J Colloid Interface Sci

January 2025

Department of Mathematics, Physics and Computer Sciences, University of Parma, 43123 Parma, Italy. Electronic address:

Hypothesis: In order to understand the basic mechanisms affecting emulsion stability, the intrinsic dynamics of the drop population must be investigated. We hypothesize that transient ballistic motion can serve as a marker of interactions between drops. In 1G conditions, buoyancy-induced drop motion obscures these interactions.

View Article and Find Full Text PDF

We comprehensively identified and analyzed the Snf2 gene family. Some Snf2 genes were involved in responding to salt stress based on the RNA-seq and qRT-PCR analysis. Sucrose nonfermenting 2 (Snf2) proteins are core components of chromatin remodeling complexes that not only alter DNA accessibility using the energy of ATP hydrolysis, but also play a critical regulatory role in growth, development, and stress response in eukaryotes.

View Article and Find Full Text PDF

Managing deepsea oil spills through a systematic modeling approach.

J Environ Manage

June 2024

Ocean Modelling and Monitoring Section, Ocean and Ecosystem Sciences Division, Maritimes Region, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, Nova Scotia, Canada, B2Y 4A2.

Offshore oil exploration and production in deepwater are associated with environmental risks to marine ecosystems. This research introduces DWOSM (Deep Water Oil Spill Model), a three-dimensional Lagrangian model, which is developed to simulate the transport and fate of oil spills resulting from subsea blowouts. DWOSM comprises three interconnected modules: DWOSM-DSD, which predicts the oil droplet size distribution from a blowout release; DWOSM-NearField, simulating plume dynamics and tracking oil droplets within the plume region; and DWOSM-FarField, modeling the evolution of dispersed oil beyond the near-field.

View Article and Find Full Text PDF

Assessment of spilled oil dispersion affected by dispersant: Characteristic, stability, and related mechanism.

J Environ Manage

May 2024

Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China. Electronic address:

Oil dispersion, a crucial process in oil transport, involves the detachment of oil droplets from slicks and their introduction into the water column, influencing subsequent oil migration and transformation. This study examines oil dispersion, considering characteristics, stability, and mechanisms, while evaluating the impact of dispersants and salinity. Results show the significant role of surfactant type in dispersants on oil dispersion characteristics, with anionic surfactants exhibiting higher sensitivity to salinity changes compared to nonionic surfactants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!