Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1101/sqb.1999.64.227 | DOI Listing |
Eur J Trauma Emerg Surg
January 2025
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
Purpose: The current geopolitical situation and climate changes accentuate the importance of health preparedness. The aim was to examine the in-hospital preparedness for Mass Casualty Incidents (MCI) and Major Incidents (MI) on a national level.
Method: A web-based, cross-sectional study of in-hospital preparedness for MCI/MI in Norway.
Physiol Plant
January 2025
Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
Melatonin (MLT) is an indole derivative that exhibits hormone-like activities in plants, regulating multiple aspects of growth and development. Due to its role in mitigating oxidative stress and facilitating osmoprotectant accumulation, MLT enhances abiotic stress tolerance, although the pathways and metabolic mechanisms involved remain unclear despite being studied in various crops. This work aimed to investigate the changes elicited by the exogenous MLT application at different concentrations (10, 50, 150 μM) and its role in mitigating the salinity stress in Lactuca sativa L.
View Article and Find Full Text PDFMed Chem
January 2025
Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco.
Background: Oxidative stress is strongly linked to neurodegeneration through the activation of c-Abl kinase, which arrests α-synuclein proteolysis by interacting with parkin interacting substrate (PARIS) and aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2). This activation, triggered by ataxia-telangiectasia mutated (ATM) kinase, leads to dopaminergic neuron loss and α-synuclein aggregation, a critical pathophysiological aspect of Parkinson's disease (PD). To halt PD progression, pharmacological inhibition of c-Abl kinase is essential.
View Article and Find Full Text PDFCellular senescence is characterized by a stable cell cycle arrest and a hypersecretory, proinflammatory phenotype in response to various stress stimuli. Traditionally, this state has been viewed as a tumor-suppressing mechanism that prevents the proliferation of damaged cells while activating the immune response for their clearance. However, senescence is increasingly recognized as a contributing factor to tumor progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!