Dimethylglycine dehydrogenase (DMGDH) (E.C. number 1.5.99.2) is a mitochondrial matrix enzyme involved in the metabolism of choline, converting dimethylglycine to sarcosine. Sarcosine is then transformed to glycine by sarcosine dehydrogenase (E.C. number 1.5.99.1). Both enzymes use flavin adenine dinucleotide and folate in their reaction mechanisms. We have identified a 38-year-old man who has a lifelong condition of fishlike body odor and chronic muscle fatigue, accompanied by elevated levels of the muscle form of creatine kinase in serum. Biochemical analysis of the patient's serum and urine, using (1)H-nuclear magnetic resonance NMR spectroscopy, revealed that his levels of dimethylglycine were much higher than control values. The cDNA and the genomic DNA for human DMGDH (hDMGDH) were then cloned, and a homozygous A-->G substitution (326 A-->G) was identified in both the cDNA and genomic DNA of the patient. This mutation changes a His to an Arg (H109R). Expression analysis of the mutant cDNA indicates that this mutation inactivates the enzyme. We therefore confirm that the patient described here represents the first reported case of a new inborn error of metabolism, DMGDH deficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1275637 | PMC |
http://dx.doi.org/10.1086/319520 | DOI Listing |
J Anim Physiol Anim Nutr (Berl)
October 2024
Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, Japan.
Antibiotics are used in swine production for growth promotion and disease prevention, raising concerns about environmental contamination and antibiotic resistance. In this study, we investigated the effects of enramycin supplementation on piglet growth, gut microbiota and blood metabolites. Enramycin promotes piglet growth and temporarily reduces diarrhoea.
View Article and Find Full Text PDFAppl Environ Microbiol
July 2024
Department of Biological Sciences, University of Delaware, Newark, Delaware, USA.
Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen were unknown. In this study, we showed that to alleviate osmotic stress biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not -inositol.
View Article and Find Full Text PDFUnlabelled: Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen were unknown. In this study, we showed that to alleviate osmotic stress biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not -inositol.
View Article and Find Full Text PDFAppl Environ Microbiol
July 2024
Department of Plant and Microbial Biology, University of Minnesota Twin Cities, St. Paul, Minnesota, USA.
Low nutrient availability is a key characteristic of the phyllosphere (the aerial surface of plants). Phyllospheric bacteria utilize a wide array of carbon sources generated by plant hosts. Glycine betaine (GB) is a plant-derived compound that can be metabolized by certain members of the phyllosphere microbiota.
View Article and Find Full Text PDFJ Bacteriol
April 2024
Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA.
is a facultative methylotroph that can grow on methanol and methylamine as sole sources of carbon and energy. Both are oxidized to formaldehyde and then to formate, so growth on C1 substrates induces the expression of genes encoding enzymes required for the oxidation of formaldehyde and formate. This induction involves a histidine kinase response regulator pair (FlhSR) that is likely triggered by formaldehyde.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!