Recent taxonomic advances have demonstrated that Burkholderia cepacia is a cluster of at least seven closely related genomic species (or genomovars) collectively referred to as the B. cepacia complex, all of which may cause infections among cystic fibrosis patients and other vulnerable individuals. Thus, it is important for clinical microbiologists to be able to differentiate genomovars. Prior to this study, 361 B. cepacia complex isolates and 51 isolates easily confused with B. cepacia complex previously had been identified using a polyphasic approach, and in this study, a comparison of phenotypic and biochemical tests was carried out. It was determined that Burkholderia multivorans and Burkholderia stabilis could reliably be separated from other members of the B. cepacia complex by phenotypic methods. A combination of phenotypic and molecular tests such as recA PCR and 16S rRNA RFLP are recommended for differentiation among the genomovars of the B. cepacia complex. A biochemical reaction scheme for the identification of B. gladioli, Pandoraea species, and Ralstonia pickettii and the differentiation of these species from the B. cepacia complex is also presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC87875PMC
http://dx.doi.org/10.1128/JCM.39.3.1073-1078.2001DOI Listing

Publication Analysis

Top Keywords

cepacia complex
28
phenotypic methods
8
cepacia
8
burkholderia cepacia
8
complex
7
phenotypic
4
methods determining
4
determining genomovar
4
genomovar status
4
burkholderia
4

Similar Publications

Burkholderia contaminans SK875, a member of Burkholderia cepacia complex (Bcc), are known to cause lung infections in cystic fibrosis patients. To gain deeper insights into its quorum sensing (QS)-mediated pathogenicity, we employed a transposon (Tn) insertion-based random mutagenesis approach. A Tn mutant library comprising of 15,000 transconjugants was generated through conjugation between wild-type (WT) recipient B.

View Article and Find Full Text PDF

The complex (BCC) is a group of Gram-negative bacteria that cause opportunistic infections, most notably in people with cystic fibrosis (CF), and have been associated with outbreaks caused by contaminated medical products. Antimicrobial susceptibility testing (AST) is often used to guide treatment for BCC infections, perhaps most importantly in people with CF who are being considered for lung transplant. However, recent studies have highlighted problems with AST methods.

View Article and Find Full Text PDF

Ascending-to-Descending Aortic Bypass of a Thoracic Stent Graft Infection with a Rare Pathogen.

Surg Infect (Larchmt)

January 2025

Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan.

Stent graft infection (SGI) caused by complex is rare. The usage of ascending-to-descending aortic bypass (ADAB) in such situations has not yet been fully discussed. Case report and literature review.

View Article and Find Full Text PDF

Chronic granulomatous disease (CGD) is a congenital disorder impairing phagocyte function, causing recurrent, life-threatening infections, and is rarely seen in adulthood. We present a 36-year-old male initially diagnosed with pneumonia. Bronchoalveolar lavage and blood cultures yielded complex, sputum cultures .

View Article and Find Full Text PDF
Article Synopsis
  • This study examines the prevalence of co-infections with Burkholderia cepacia complex (Bcc) in patients with respiratory infections like COVID-19 and H7N9, highlighting a lack of previous research on this topic.
  • A total of 49 Bcc isolates were analyzed from patients, revealing that those infected with COVID-19 had a higher rate of multidrug resistance and a shorter median lethal time compared to those with H7N9.
  • The findings suggest that COVID-19-Bcc may have evolved from H7N9-Bcc, demonstrating increased virulence and antibiotic resistance in the context of respiratory infections.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!