A large fraction of the cost of DNA sequencing and other DNA-analysis processes results from the reagent costs incurred during cycle sequencing or PCR. In particular, the high cost of the enzymes and dyes used in these processes often results in thermal cycling costs exceeding $0.50 per sample. In the case of high-throughput DNA sequencing, this is a significant and unnecessary expense. Improved detection efficiency of new sequencing instrumentation allows the reaction volumes for cycle sequencing to be scaled down to one-tenth of presently used volumes, resulting in at least a 10-fold decrease in the cost of this process. However, commercially available thermal cyclers and automated reaction setup devices have inherent design limitations which make handling volumes of <1 microL extremely difficult. In this paper, we describe a method for thermal cycling aimed at reliable, automated cycling of submicroliter reaction volumes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC311064 | PMC |
http://dx.doi.org/10.1101/gr.gr1644r | DOI Listing |
Nanoscale Adv
January 2025
School of Chemical Engineering, Yeungnam University 280 Daehak-Ro Gyeongsan 38541 Republic of Korea
Two-dimensional (2D) hybrid materials, particularly those based on boron nitride (BN) and graphene oxide (GO), have attracted significant attention for energy applications owing to their distinct structural and electronic properties. BN/GO composites uniquely combine the mechanical strength, thermal stability and electrical insulation of BN with the high conductivity and flexibility of GO, creating advanced materials ideal for the fabrication of batteries, supercapacitors and fuel cells. These hybrids offer synergistic effects, enhanced charge transport, increased surface area, and improved chemical stability, making them promising candidates for high-performance energy systems.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemistry, Kohsar University Murree, Murree, 47150, Punjab, Pakistan.
Antibiotics and pharmaceuticals exert significant environmental risks to aquatic ecosystems and human health. Many effective remedies to this problem have been developed through research. Metal-organic frameworks (MOFs) are potential constituents, for drug and antibiotic removal.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. Electronic address:
The pretreatment with green deep eutectic solvents (DESs) is conducive to realizing the high-efficiency utilization of lignin at a low cost. In this study, an innovative choline chloride/urea/calcium hydroxide (ChCl/UR/Ca(OH)) DES containing a reversibly-soluble base Ca(OH) was developed for the pretreatment of enzymatic hydrolysis lignin (EHL). The lignin pretreatment effects of the proposed ChCl/UR/Ca(OH) DES were compare with a series of DESs.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
Bismuth oxyselenide (BiOSe) stands as a highly promising layered semiconductor with outstanding optical, electrical, and thermal properties. For the practical application of the material toward the devices, growing BiOSe directly on the amorphous substrate at low temperatures (<400 °C) is essential; however, the negatively charged bottom Se layer originating from alternating stacks of Se and [BiO] has hindered this process. In this work, we report the method for synthesizing a BiOSe film on amorphous alumina (AlO) directly at 350 °C by using chemical solution deposition.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India.
We report nonconjugated monocyclic dienes (nCMDs) as unique photoswitchable molecules that hold promise for harvesting substantial solar energy and storing it for extended durations. Herein, cyclohepta-1,4-diene and its N-heterocyclic analogue have been considered as prototypical models for investigating photoswitching behavior in nCMDs. Initially, the nonradiative deactivation pathway of nCMD from the low-lying excited state to the [2 + 2]-cycloadduct has been evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!