O-beta-D-ribofuranosyl nucleoside I is the minimal structural entity of liposidomycins that maintains enzyme inhibitory activity on MraY. A set of compounds with hydroxyl patterns different from I has been synthesized. The presence of a hydroxyl group in the 3" position is essential for the activity. The 3'-deoxy derivative (IV), however, shows a 5-fold improved potency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0960-894x(00)00714-9DOI Listing

Publication Analysis

Top Keywords

o-beta-d-ribofuranosyl nucleoside
8
synthesis analogues
4
analogues o-beta-d-ribofuranosyl
4
nucleoside moiety
4
moiety liposidomycins
4
liposidomycins role
4
role hydroxyl
4
hydroxyl groups
4
groups inhibition
4
inhibition mray
4

Similar Publications

In this article, the earlier reported procedure for the synthesis of 2'-O-β-D-ribofuranosyl nucleosides was extended to the synthesis of 2'-O-α-D-ribofuranosyl adenosine, a monomeric unit of poly(ADP-ribose). It consists in condensation of a small excess of 1-O-acetyl-2,3,5-tri-O-benzoyl-α,β-D-arabinofuranose activated with tin tetrachloride with 3',5'-O-tetra-isopropyldisiloxane-1,3-diyl-ribonucleosides in 1,2-dichloroethane. The following debenzoylation and silylation of arabinofuranosyl residue and inversion of configuration at C-2'' atom of arabinofuranosyl residue and final removal of silyl protective groups gave 2'-O-α-D-ribofuranosyl adenosine in overall 13% to 21% yield.

View Article and Find Full Text PDF

The impact of a number of synthetic nucleoside derivatives on the growth and survival of cultured human ovarian tumor cells (line SKOV-3) and normal human lung fibroblasts was investigated. It was shown that the dialdehyde derivatives of uridine, 1-β-D-eritrofuranozyl uracil and 3'-O-β-D-ribofuranosyl-2'-deoxythymidine, in contrast to their unoxidized counterparts, exert marked toxic effect on SKOV-3 cells. Cultured human fibroblasts were less susceptible to the damaging effect of the dialdehyde nucleosides.

View Article and Find Full Text PDF

Nearly 30 synthetic nucleosides were tested with human recombinant poly(ADP-ribose) polymerase 1 as potential inhibitors of this enzyme. The most active compounds were some disaccharide analogues of thymidine: 3'-O-β-D-ribofuranosyl-5-iodo-dUrd (2d; IC₅₀ = 45 μM), 3'-O-β-D-ribofuranosyl-2'-deoxythymidine (2e; IC₅₀ = 38 μM), and 3'-O-β-D-ribofuranosyl-2'-deoxythymidine oxidized (4; IC₅₀ = 25 μM). These compounds also reduced H₂O₂-induced synthesis of poly(ADP-ribose) in cultured human ovarian carcinoma (SKOV-3) cells in a dose-dependent manner.

View Article and Find Full Text PDF

tRNA is best known for its function as amino acid carrier in the translation process, using the anticodon loop in the recognition process with mRNA. However, the impact of tRNA on cell function is much wider, and mutations in tRNA can lead to a broad range of diseases. Although the cloverleaf structure of tRNA is well-known based on X-ray-diffraction studies, little is known about the dynamics of this fold, the way structural dynamics of tRNA is influenced by the modified nucleotides present in tRNA, and their influence on the recognition of tRNA by synthetases, ribosomes, and other biomolecules.

View Article and Find Full Text PDF

The formation of a disaccharide nucleoside (11) by O3'-glycosylation of 5'-O-protected 2'-deoxyadenosine or its N6-benzoylated derivative has been observed to be accompanied by anomerisation to the corresponding alpha-anomeric product (12). The latter reaction can be explained by instability of the N-glycosidic bond of purine 2'-deoxynucleosides in the presence of Lewis acids. An independent study on the anomerisation of partly blocked 2'-deoxyadenosine has been carried out.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!