Anti-HIV activity of aromatic and heterocyclic thiazolyl thiourea compounds.

Bioorg Med Chem Lett

Drug Discovery Program, Parker Hughes Institute, St. Paul, MN 55113, USA.

Published: February 2001

Several thiazolyl thiourea derivatives were designed and synthesized as non-nucleoside inhibitors (NNRTI) of HIV-1 reverse transcriptase. Six lead compounds were identified that showed subnanomolar IC50 values for the inhibition of HIV replication, were minimally toxic to human peripheral blood mononuclear cells (PBMC) with CC50 values ranging from 28 to >100 microM, and showed remarkably high selectivity indices ranging from 28,000 to >100,000. The most promising compound was N-[1-(1-furoylmethyl)]-N'-[2-(thiazolyl)]thiourea (compound 6), which showed potency against two NNRTI-resistant HIV-1 isolates (A17 and A17 variant) at nanomolar to low micromolar concentrations, exhibited much greater potency against both wild-type as well as NNRTI-resistant HIV-1 than nevirapine, delavirdine, HI-443, and HI-244, was minimally toxic to PBMC, and had a selectivity index of > 100,000. The potency and minimal cytotoxicity of these aromatic/heterocyclic thiourea compounds suggest that they may be potentially useful as anti-AIDS drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0960-894x(01)00011-7DOI Listing

Publication Analysis

Top Keywords

thiazolyl thiourea
8
thiourea compounds
8
minimally toxic
8
nnrti-resistant hiv-1
8
anti-hiv activity
4
activity aromatic
4
aromatic heterocyclic
4
heterocyclic thiazolyl
4
compounds thiazolyl
4
thiourea derivatives
4

Similar Publications

Prolyl oligopeptidase (POP) is a compelling therapeutic target associated with aging and neurodegenerative disorders due to its pivotal role in neuropeptide processing. Despite initial promise demonstrated by early-stage POP inhibitors, their progress in clinical trials has been halted at Phase I or II. This impediment has prompted the pursuit of novel inhibitors.

View Article and Find Full Text PDF

The present work focuses on the development of an interpretable quantitative structure-activity relationship (QSAR) model for predicting the anti-HIV activities of 67 thiazolylthiourea derivatives. This set of molecules has been proposed as potent HIV-1 reverse transcriptase inhibitors (RT-INs). The molecules were encoded to a diverse set of molecular descriptors, spanning different physical and chemical properties.

View Article and Find Full Text PDF

Predicting anti-HIV activity of PETT derivatives: CoMFA approach.

Bioorg Med Chem Lett

April 2007

Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, MP 470 003, India.

HIV-1 (Human Immunodeficiency Virus Type-1) is the pathogenic retrovirus and causative agent of AIDS. HIV-1 RT is one of the key enzymes in the duplication of HIV-1. Inhibitors of HIV-1 RT are classified as NNRTIs and NRTIs.

View Article and Find Full Text PDF

Non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTI) are an integral part of combination therapy comprising three classes of antiretroviral drugs for the management of HIV/AIDS. NNRTIs are chemically diverse compounds that bind to a common allosteric site of HIV-1 RT and noncompetitively inhibit DNA polymerization. Resistance to NNRTIs arises rapidly upon drug treatment and results from mutation of the amino acids lining the HIV-1 RT binding pocket.

View Article and Find Full Text PDF

Expected for the ability to inhibit HIV replication, we report the synthesis of two heterodimers of the general formula: [2NRTI]-C5-GLY-SUCCINYL-Npiperazinyl-[NNRTI] (18, 19) containing both a Nucleoside Reverse Transcriptase Inhibitor (10, 11) and a Non-Nucleoside Reverse Transcriptase Inhibitor (8) [Trovirdine Analogue belonging of the phenethyl thiazolyl thiourea class] connected through the "succinyl-glycine" spontaneously cleavable linker.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!