To date, most research performed in the area of spinal cord injury focuses on treatments designed to either prevent spreading lesion (secondary injury) or to enhance outgrowth of long descending and ascending fiber tracts around or through the lesion. In the last decade, however, several authors have shown that it is possible to enhance locomotor function after spinal cord injury in both animals and patients using specific training paradigms. As a first step towards combining such training paradigms with pharmacotherapy, we evaluated recovery of function in adult rats sustaining a spinal cord contusion injury (MASCIS device, 12.5 mm at T8), either housed in an enriched environment or in standard cages (n = 15 in both groups). The animals in the enriched environment were stimulated to increase their locomotor activity by placing water and food on opposite sides of the cage. As extra stimuli, a running wheel and several other objects were added to the cage. We show that exposure to the enriched environment improves gross and fine locomotor recovery as measured by the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale, the BBB subscale, the Gridwalk, and the Thoracolumbar height test. However, no group differences were found on our electrophysiological parameters nor on the amount of spared white matter. These data justify further studies on enriched housing and more controlled exercise training, with their use as potential additive to pharmacological intervention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/08977150150502622 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!