Objective: To determine the usefulness of measuring serum free thyroxine (T4) concentration as a diagnostic test for hyperthyroidism in cats, and to determine the influence of nonthyroidal disease on free T4 concentration in cats without hyperthyroidism.

Design: Prospective case series.

Animals: 917 cats with untreated hyperthyroidism, 221 cats with nonthyroidal disease, and 172 clinically normal cats.

Procedure: Serum free T4, total T4, and total triiodothyronine (T3) concentrations were measured in cats with untreated hyperthyroidism and cats with nonthyroidal disease. Serum total T4 and T3 concentrations were determined by use of radioimmunoassay, and free T4 concentration was measured by use of direct equilibrium dialysis. Reference ranges for hormone concentrations were established on the basis of results from the 172 clinically normal cats.

Results: Sensitivity of serum free T4 concentration as a diagnostic test for hyperthyroidism was significantly higher than the test sensitivity of either total T4 or T3 concentration. Of the 221 cats with nonthyroidal disease, 14 had a high free T4 concentration (ie, false-positive result). Therefore, calculated specificity of measuring serum free T4 concentration as a diagnostic test for hyperthyroidism was significantly lower than test specificity of measuring either the total T4 or T3 concentration.

Conclusions And Clinical Relevance: Results indicate that determination of free T4 concentration is useful in the diagnosis of hyperthyroidism, especially in cats in which hyperthyroidism is suspected but total T4 and T3 concentrations are within reference ranges. However, because some cats with nonthyroidal disease have high serum free T4 concentrations, hyperthyroidism should not be diagnosed solely on the finding of high free T4 concentration.

Download full-text PDF

Source
http://dx.doi.org/10.2460/javma.2001.218.529DOI Listing

Publication Analysis

Top Keywords

free concentration
28
nonthyroidal disease
24
cats nonthyroidal
20
serum free
20
hyperthyroidism cats
16
concentration diagnostic
12
diagnostic test
12
test hyperthyroidism
12
free
11
cats
11

Similar Publications

The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, , free lipid molecules, charged surfactant molecules , which in turn lead to a nonzero charge along the liquid-liquid interface.

View Article and Find Full Text PDF

Years of life lost attributable to air pollution, a health risk-based air quality index approach in Ningbo, China.

Int J Biometeorol

January 2025

Department of Preventive Health, Shanxi Cardiovascular Hospital, No. 18 Yifen Street, Wanbailin District, Taiyuan, 030024, Shanxi Province, China.

Air pollution remains a significant threat to human health and economic development. Most previous studies have examined the health effects of individual pollutants, which often overlook the combined impacts of multiple pollutants. The traditional composite indicator air quality index (AQI) only focuses on the major pollutants, whereas the health risk-based air quality index (HAQI) could offer a more comprehensive evaluation of the health effects of various pollutants on populations.

View Article and Find Full Text PDF

Exploring the synergistic effect of NaOH/NaClO absorbent in a novel wet FGD scrubber to control SOx/NOx emissions.

Environ Monit Assess

January 2025

International Joint Research Center For Green Energy and Chemical Industry, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.

Escalating SOx and NOx emissions from industrial plants necessitates customized scrubbing solutions to improve removal efficiency and tackle cost limitations in existing wet FGD units. This work investigates the real-time intensified removal pathways via an innovative two-stage countercurrent spray tower configuration strategically integrating NaOH (M) and NaOH/NaClO (M/M) to remove SOx and NOx emissions simultaneously from the industrial stack through a comprehensive parametric study of absorbents concentration, reaction temperature, gas flow rate, liquid to gas ratio (F/F), and absorbent showering head. Flue gas stream comprising SO bearing 4500 ppm, SO bearing 300 ppm, 70 ppm NO, and 50 ppm NO brought into contact with two scrubbing solutions as M, and a complex absorbent of M/M at varying respective ratios.

View Article and Find Full Text PDF

Hydrogen Bonding-Driven Adaptive Coacervates as Protocells.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

Coacervation based on liquid-liquid phase separation (LLPS) has been widely used for the preparation of artificial protocells and to mimic the dynamic organization of membrane-free organelles. Most complex synthetic coacervates are formed through electrostatic interactions but cannot withstand high ionic strength conditions (>0.1 M).

View Article and Find Full Text PDF

The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!