Jaw-closing muscles of kangaroos express alpha-cardiac myosin heavy chain.

J Muscle Res Cell Motil

Department of Physiology and Institute for Biomedical Research, The University of Sydney, NSW, Australia.

Published: June 2001

The masseter muscle of eutherian grazing mammals typically express beta or slow myosin heavy chain (MyHC). Myosins in the masseter of 4 species of kangaroos and a slow limb muscle of one of them were compared with their cardiac myosin by pyrophosphate and sodium dodecyl sulphate (SDS) gel electrophoresis, immunoblotting and immunohistochemistry. It was found that ventricular muscle contains three isoforms homologous to V1 (alpha-MyHC homodimer), V2 (heterodimer) and V3 (beta-MyHC homodimer) of eutherian cardiac muscle, and that the masseter contained V1, with traces of V2 and V3, in great contrast to eutherian ruminants, which express only V3. A polyclonal antibody (anti-KJM) was raised in rabbits against red kangaroo masseter myosin. After cross-absorption against limb muscle myofibrils, anti-KJM specifically reacted in Westerns with MyHCs from masseter but not limb muscles, and immunohistochemically with masseter, but not limb muscle fibers. In pyrophosphate Western blots, anti-KJM reacted with V1 but not with V3. However, a monoclonal antibody specific for eutherian slow myosin stained all kangaroo slow muscle fibers but only weakly stained scattered fibers in the masseter. The SDS-PAGE revealed that light chain composition of masseter and ventricular myosins is identical, but isoforms of both light chains of kangaroo limb slow myosin were observed. These results confirm that kangaroo jaw muscle express alpha-MyHC rather than beta-MyHC. The difference in MyHC gene expression between marsupial and eutherian grazers may be related to the fact that kangaroos are not ruminants, and have only a single chance to comminute food into fine particles, hence the need for the greater speed and power of muscle contraction associated with V1 containing muscle fibers.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1005676106940DOI Listing

Publication Analysis

Top Keywords

slow myosin
12
limb muscle
12
muscle fibers
12
muscle
10
myosin heavy
8
heavy chain
8
masseter
8
anti-kjm reacted
8
masseter limb
8
myosin
6

Similar Publications

Effects of cytochalasin D on relaxation process of skinned taenia cecum and carotid artery from guinea pig.

J Physiol Sci

January 2025

Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-Ku, 116-8551, Tokyo, Japan. Electronic address:

Actin linked regulatory mechanisms are known to contribute contraction/relaxation in smooth muscle. In order to clarify whether modulation of polymerization/depolymerization of actin filaments affects relaxation process, we examined the effects of cytochalasin D on relaxation process by Ca removal after Ca-induced contraction of β-escin skinned (cell membrane permeabilized) taenia cecum and carotid artery preparations from guinea pigs. Cytochalasin D, an inhibitor of actin polymerization, significantly suppressed the force during relaxation both in skinned taenia cecum and carotid artery.

View Article and Find Full Text PDF

Phosphate rebinding induces force reversal via slow backward cycling of cross-bridges.

Front Physiol

January 2025

Institute of Vegetative Physiology, University of Cologne, Köln, Germany.

Objective: Previous studies on muscle fibers, myofibrils, and myosin revealed that the release of inorganic phosphate (P) and the force-generating step(s) are reversible, with cross-bridges also cycling backward through these steps by reversing force-generating steps and rebinding P. The aim was to explore the significance of force redevelopment kinetics (rate constant ) in cardiac myofibrils for the coupling between the P binding induced force reversal and the rate-limiting transition for backward cycling of cross-bridges from force-generating to non-force-generating states.

Methods: and force generation of cardiac myofibrils from guinea pigs were investigated at 0.

View Article and Find Full Text PDF

Myosin-IC (myo1c) is a class-I myosin that supports transport and remodeling of the plasma membrane and membrane-bound vesicles. Like other members of the myosin family, its biochemical kinetics are altered in response to changes in mechanical loads that resist the power stroke. However, myo1c is unique in that the primary force-sensitive kinetic transition is the isomerization that follows ATP binding, not ADP release as in other slow myosins.

View Article and Find Full Text PDF

Cold-water fishes, such as Brook trout (Salvelinus fontinalis), are being challenged by the consequences of climate change. The ability of these fish to acclimate to warmer environmental conditions is vital to their survival. Acclimation to warmer water may allow brook trout to reduce the metabolic costs of higher temperatures.

View Article and Find Full Text PDF

Genomics and transcriptomics identify quantitative trait loci affecting growth-related traits in silver pomfret (Pampus argenteus).

Comp Biochem Physiol Part D Genomics Proteomics

January 2025

National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China. Electronic address:

Pampus argenteus, a species distributed throughout the Indo-West Pacific, plays a significant role in the yield of aquaculture species. However, cultured P. argenteus has always been characterised by unbalanced growth synchronisation among individuals, slow growth rate, and lack of excellent germplasm resources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!