Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography.

Proc Natl Acad Sci U S A

Boulder Laboratory for 3-D Fine Structure, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.

Published: February 2001

The positional relationships among all of the visible organelles in a densely packed region of cytoplasm from an insulin secreting, cultured mammalian cell have been analyzed in three dimensions (3-D) at approximately 6 nm resolution. Part of a fast frozen/freeze-substituted HIT-T15 cell that included a large portion of the Golgi ribbon was reconstructed in 3-D by electron tomography. The reconstructed volume (3.1 x 3.2 x 1.2 microm(3)) allowed sites of interaction between organelles, and between microtubules and organellar membranes, to be accurately defined in 3-D and quantitatively analyzed by spatial density analyses. Our data confirm that the Golgi in an interphase mammalian cell is a single, ribbon-like organelle composed of stacks of flattened cisternae punctuated by openings of various sizes [Rambourg, A., Clermont, Y., & Hermo, L. (1979) Am. J. Anat. 154, 455-476]. The data also show that the endoplasmic reticulum (ER) is a single continuous compartment that forms close contacts with mitochondria, multiple trans Golgi cisternae, and compartments of the endo-lysosomal system. This ER traverses the Golgi ribbon from one side to the other via cisternal openings. Microtubules form close, non-random associations with the cis Golgi, the ER, and endo-lysosomal compartments. Despite the dense packing of organelles in this Golgi region, approximately 66% of the reconstructed volume is calculated to represent cytoplasmic matrix. We relate the intimacy of structural associations between organelles in the Golgi region, as quantified by spatial density analyses, to biochemical mechanisms for membrane trafficking and organellar communication in mammalian cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC30150PMC
http://dx.doi.org/10.1073/pnas.051631998DOI Listing

Publication Analysis

Top Keywords

golgi region
12
golgi
8
electron tomography
8
mammalian cell
8
golgi ribbon
8
reconstructed volume
8
spatial density
8
density analyses
8
organelles golgi
8
organellar relationships
4

Similar Publications

The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon () was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them.

View Article and Find Full Text PDF

Background: Hailey-Hailey disease (HHD), a genetic blistering disease, is caused by a mutation in a calcium transporter protein in the Golgi apparatus encoded by the gene. Clinically, HHD is characterized by flaccid vesicles, blisters, erosions, fissures, and maceration mainly in intertriginous regions. Some patients remain refractory to conventional treatments.

View Article and Find Full Text PDF

(-) - (11R, 12S)-mefloquine ameliorates neuropathic pain by modulating Cx36-ER stress interaction in the pain-related central nervous system in rats.

Life Sci

January 2025

Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China; Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. Electronic address:

Aims: To explore the specific molecular and cellular mechanisms of (-) - Mefloquine (one of Mefloquine's enantiomers) in modulating the interaction between Connexin 36 (Cx36) and endoplasmic reticulum stress (ERS) both in rats with CCI-induced neuropathic pain and in tunicamycin-induced ERS cells.

Materials And Methods: The authors conducted chronic constriction injury (CCI) in rats to induce neuropathic pain and established the ERS model in SH-SY5Y cells to mimic the stress state after neuropathic pain. The study employed behavioral tests and various molecular biology techniques, including Western blot analysis, cell transfection, and co-immunoprecipitation (co-IP).

View Article and Find Full Text PDF

Background: Perioperative Neurocognitive Disorders (PND) are associated withanesthesia and surgery, especially in the elderly. Astrocyte activation in old mice correlates with PND development. These cells can switch to a pro-inflammatory or an anti-inflammatory phenotype, regulated by the STAT3 pathway.

View Article and Find Full Text PDF

Use of Biotin-Labeled Geranyl Pyrophosphate for Analysis of Ykt6 Geranylgeranylation.

Methods Mol Biol

January 2025

Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.

Functionally derivatized analogs of prenyl lipids are valuable tools for the detection and analysis of prenylated proteins. Using a biotinylated analog of geranylgeranyl, we previously identified Ykt6 as a substrate for a novel protein prenyltransferase, termed geranylgeranyltransferase type III (GGTase-III). Ykt6 is an evolutionarily highly conserved SNARE protein that regulates multiple intracellular trafficking pathways, including intra-Golgi trafficking and autophagosome-lysosome fusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!