Background: Increased concentrations of exhaled nitric oxide (NO) correlate with increased airway inflammation and measurement of exhaled NO is a noninvasive method for the management of bronchial asthma. In various cardiac diseases, bronchial hyperresponsiveness is observed, as is bronchial asthma. However, there have been few studies on the relationship between exhaled NO and bronchial responsiveness in cardiac diseases.

Objective: The aim of this study was to clarify the association between exhaled NO and bronchial hyperresponsiveness in patients with cardiac disease.

Methods: We measured expired NO and bronchial responsiveness to inhaled methacholine in 19 patients with cardiac diseases and 17 with bronchial asthma. We divided the cardiac disease patients into two groups according to their bronchial responsiveness to inhaled methacholine: BHR(+) group consisted of 12 patients with bronchial hyperresponsiveness and BHR(-) group consisted of 7 patients without bronchial hyperresponsiveness.

Results: The concentration of exhaled NO in the asthmatic patients was significantly higher than that in the BHR(+) and BHR(-) groups (142.0 +/- 17.0, 33.6 +/- 6.4 and 42.3 +/- 10.3 ppb, respectively, p < 0.01). There was no significant difference in exhaled NO between BHR(+) and BHR(-) groups. There were also no significant differences in the parameters of bronchial hyperresponsiveness between the cardiac BHR(+) and bronchial asthma groups. These results indicate that bronchial hyperresponsiveness in patients with cardiac diseases is not a consequence of eosinophilic inflammation or of exhaled NO.

Conclusion: We conclude that bronchial hyperresponsiveness in patients with cardiac diseases can occur independently of NO production.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000050461DOI Listing

Publication Analysis

Top Keywords

bronchial hyperresponsiveness
28
patients cardiac
20
bronchial asthma
16
cardiac diseases
16
bronchial
15
bronchial responsiveness
12
hyperresponsiveness patients
12
patients
9
cardiac
9
exhaled
8

Similar Publications

Inula japonica Thunb. and its active compounds ameliorate airway inflammation by suppressing JAK-STAT signaling.

Biomed Pharmacother

January 2025

KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, Republic of Korea. Electronic address:

Asthma, a chronic inflammatory disease, remains a global health challenge due to its complex pathophysiology and the limited treatment efficacy. This study explored the effect of Inula japonica Thunb. water extract (IJW) on asthma and its protective mechanisms.

View Article and Find Full Text PDF

Pulmonary function in swimmers exposed to disinfection by-products: a narrative review.

Front Physiol

January 2025

Department of Sport Medicine and Traumatology, Poznan Univeristy of Physical Education, Poznań, Poland.

Swimming produces many psychophysiological effects, including blood, hormonal, enzymatic, pulmonary, cardiovascular and energetic adaptations. However, asthma and allergies are becoming increasingly prevalent medical issues among elite endurance-trained swimmers, where exercise-induced asthma or bronchospasm is frequently reported. Heavy endurance swimming training, especially under adverse conditions, stresses the airway mucosa, leading to inflammatory changes, as observed in induced sputum in competitive swimmers.

View Article and Find Full Text PDF

Background: Long COVID patients are prone to bronchial hyperresponsiveness and respiratory symptoms like coughing and breathing difficulties, often with positive bronchial provocation test (BPT) results.

Objective: This study aims to evaluate the diagnostic value of various lung function tests in patients with long-term COVID-19, explicitly focusing on positive BPT outcomes.

Methods: Our study analyzed the BPT outcomes and various pulmonary function parameters of all 9,406 COVID-19 patients who met the inclusion criteria and visited our hospital between February 24, 2022, and April 28, 2024.

View Article and Find Full Text PDF

Silibinin alleviates house dust mite induced allergic airway inflammation by inhibiting NLRC4 inflammasome and MMP-9 expression.

Biomed Pharmacother

January 2025

College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea. Electronic address:

Silibinin, a major compound of silymarin, has been reported to alleviate respiratory diseases including acute lung injury, asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis through its antifibrotic, anti-inflammatory, and antioxidant properties. However, the specific mechanisms underlying its therapeutic effects, particularly in allergic asthma, are not fully understood. With the increasing prevalence and impact of allergic asthma, there is a need to elucidate the exact underlying mechanisms of its potential treatment effects.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) have identified genetic variants robustly associated with asthma. A potential near-term clinical application is to calculate polygenic risk score (PRS) to improve disease risk prediction. The value of PRS, as part of numerous multi-source variables used to define asthma, remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!