The genetic analysis of human herpesvirus 8 (HHV8), also termed Kaposi's sarcoma-associated virus, has been hampered by severe difficulties in producing infectious viral particles and modifying the viral genome. In this article, we report the successful cloning of the HHV8 complete genome onto a prokaryotic F-plasmid replicon which allows the propagation of the recombinant viral DNA in Escherichia coli. The insertion of the F-plasmid into the HHV8 genome interrupts the ORF56 gene, whose expression product-by homology with the Epstein-Barr virus BSLF1 gene--is supposed to be necessary for lytic DNA replication. After introduction of the recombinant HHV8 DNA into 293 cells, early viral antigens are expressed, suggesting that spontaneous lytic replication is initiated. However, completion of the lytic program is prevented by the absence of the ORF56 protein, and a quasi-latent state is established. Upon reintroduction of the ORF56 viral gene, the block is overcome and infectious HHV8 virions are produced. As the recombinant HHV8 genome can be easily modified in E. coli, this experimental system opens the way to an extensive genetic analysis of other HHV8 functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC115918PMC
http://dx.doi.org/10.1128/JVI.75.6.2921-2928.2001DOI Listing

Publication Analysis

Top Keywords

kaposi's sarcoma-associated
8
sarcoma-associated virus
8
genetic analysis
8
hhv8 genome
8
recombinant hhv8
8
hhv8
7
viral
5
spontaneous activation
4
lytic
4
activation lytic
4

Similar Publications

Epigenetic and epitranscriptomic regulation during oncogenic -herpesvirus infection.

Front Microbiol

January 2025

Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Oncogenic gamma herpesviruses, including Epstein-Barr Virus (EBV) and Kaposi's Sarcoma-associated Herpesvirus (KSHV), are opportunistic cancer-causing viruses and induces oncogenesis through complex mechanisms, which involves manipulation of cellular physiology as well as epigenetic and epitranscriptomic reprogramming. In this review, we describe the intricate processes by which these viruses interact with the epigenetic machinery, leading to alterations in DNA methylation, histone modifications, and the involvement of non-coding RNAs. The key viral proteins such as EBNA1 and LMP1 encoded by EBV; LANA and vGPCR encoded by KSHV; play pivotal roles in these modifications by interacting with host factors, and dysregulating signaling pathways.

View Article and Find Full Text PDF

Mouse models of Kaposi sarcoma-associated herpesvirus (KSHV).

Virology

December 2024

Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, USA. Electronic address:

Infection with Kaposi sarcoma-associated herpesvirus (KSHV) is a prerequisite for the development of several human cancers, including Kaposi sarcoma and primary effusion lymphoma. Efficient long-term infection with KSHV and subsequent virally induced cell transformation is limited to humans, resulting in a lack of small animal models for KSHV-driven malignancies. Various attempts to create a mouse model for KSHV include infection of humanized mice, generating transgenic mice that ectopically express viral proteins, and grafting KSHV-infected tumor, primary, or immortalized cells onto immunodeficient mice.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus associated with Kaposi's sarcoma and B cell malignancies. Like all herpesviruses, KSHV contains conserved envelope glycoproteins (gps) involved in virus binding, entry, assembly, and release from infected cells, which are also targets of the immune response. Due to the lack of a reproducible animal model of KSHV infection, the precise functions of the KSHV gps during infection are not completely known.

View Article and Find Full Text PDF

Modulation of Lymphotoxin β Surface Expression by Kaposi's Sarcoma-Associated Herpesvirus K3 Through Glycosylation Interference.

J Med Virol

January 2025

Department of Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.

Kaposi's sarcoma-associated herpesvirus (KSHV) employs diverse mechanisms to subvert host immune responses, contributing to its infection and pathogenicity. As an immune evasion strategy, KSHV encodes the Membrane-Associated RING-CH (MARCH)-family E3 ligases, K3, and K5, which target and remove several immune regulators from the cell surface. In this study, we investigate the impact of K3 and K5 on lymphotoxin receptor (LTβR) ligands, LTβ and LIGHT, which are type II transmembrane proteins and function as pivotal immune mediators during virus infection.

View Article and Find Full Text PDF

KSHV hijacks the antiviral kinase IKKε to initiate lytic replication.

PLoS Pathog

January 2025

Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

IKKε is a traditional antiviral kinase known for positively regulating the production of type I interferon (IFN) and the expression of IFN-stimulated genes (ISGs) during various virus infections. However, through an inhibitor screen targeting cellular kinases, we found that IKKε plays a crucial role in the lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV). Mechanistically, during KSHV lytic replication, IKKε undergoes significant SUMOylation at both Lys321 and Lys549 by the viral SUMO E3 ligase ORF45.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!