We present a meanfield theoretical approach for studying protein-solvent interactions. Starting with the partition function of the system, we develop a field theory by introducing densities for the different components of the system. At this point, protein-solvent interactions are introduced following the inhomogeneous Flory-Huggins model for polymers. Finally, we calculate the free energy in a meanfield approximation. We apply this method to study the stability of the tetramerization domain of the tumor suppressor protein p53 when subjected to site-directed mutagenesis. The four chains of this protein are held together by hydrophobic interactions, and some mutations can weaken this bond while preserving the secondary structure of the single protein chains. We find good qualitative agreement between our numerical results and experimental data, thus encouraging the use of this method as a guide in designing experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1301344PMC
http://dx.doi.org/10.1016/S0006-3495(01)76125-5DOI Listing

Publication Analysis

Top Keywords

protein-solvent interactions
8
meanfield approach
4
approach thermodynamics
4
thermodynamics protein-solvent
4
protein-solvent systems
4
systems application
4
application p53
4
p53 meanfield
4
meanfield theoretical
4
theoretical approach
4

Similar Publications

Protein catalysis and allostery require the atomic-level orchestration and motion of residues and ligand, solvent and protein effector molecules. However, the ability to design protein activity through precise protein-solvent cooperative interactions has not yet been demonstrated. Here we report the design of 14 membrane receptors that catalyse G protein nucleotide exchange through diverse engineered allosteric pathways mediated by cooperative networks of intraprotein, protein-ligand and -solvent molecule interactions.

View Article and Find Full Text PDF

Multiplex Trifluoromethyl and Hydroxyl Radical Chemistry Enables High-Resolution Protein Footprinting.

Anal Chem

January 2025

Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, United States.

Hydroxyl radical-based protein footprinting (HRPF) coupled with mass spectrometry is a valuable medium-resolution technique in structural biology, facilitating the assessment of protein structure and molecular-level interactions in solution conditions. In HRPF with X-rays (XFP), hydroxyl radicals generated by water radiolysis covalently label multiple amino acid (AA) side chains. However, HRPF technologies face challenges in achieving their full potential due to the broad (>10) dynamic range of AA reactivity with OH and difficulty in detecting slightly modified residues, most notably in peptides with highly reactive residues like methionine, or where all residues have low OH reactivities.

View Article and Find Full Text PDF

The influence of polar, water-miscible organic solvents (POS) on protein structure, stability, and functional activity is a subject of significant interest and complexity. This study examines the effects of acetonitrile (ACN), a semipolar, aprotic solvent, on the solvation properties of blocked Ace-Gly-X-Gly-Nme tripeptides (where Ace and Nme stands for acetyl and N-methyl amide groups respectively and X is any amino acid) through extensive molecular dynamics simulations. Individual simulations were conducted for each peptide, encompassing five different ACN concentrations within the range of χ = 0.

View Article and Find Full Text PDF

To develop therapeutic strategies against COVID-19, we introduce a high-resolution all-atom polarizable model capturing many-body effects of protein, glycan, solvent, and membrane components in SARS-CoV-2 spike protein open and closed states. Employing μs-long molecular dynamics simulations powered by high-performance cloud-computing and unsupervised density-driven adaptive sampling, we investigated the differences in bulk-solvent-glycan and protein-solvent-glycan interfaces between these states. We unraveled a sophisticated solvent-glycan polarization interaction network involving the N165/N343 glycan-gate patterns that provide structural support for the open state and identified key water molecules that could potentially be targeted to destabilize this configuration.

View Article and Find Full Text PDF

Protein Thermodynamic Properties, Crystallisation, and the Hofmeister Series.

Chempluschem

August 2024

Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research "Demokritos", Neapoleos 27, Ag. Paraskevi, Athens, 15341, Greece.

The Hofmeister series is a series of ions ordered according to their ability to precipitate proteins. It has also been linked to a host of (bio)chemical phenomena. Several attempts over the years to correlate the series to the varying success of different salts in crystallising proteins have been largely inconclusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!