Download full-text PDF |
Source |
---|
J Am Chem Soc
January 2025
Molecular Synthesis Center, Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
2-Deoxy-β-glycosides are essential components of natural products and pharmaceuticals; however, the corresponding 2-deoxy-β-glycosidic bonds are challenging to chemically construct. Herein, we describe an efficient catalytic protocol for synthesizing 2-deoxy-β-glycosides via either IPrAuNTf-catalyzed activation of a unique 1,2--positioned C2--propargyl xanthate (OSPX) leaving group or (PhO)PAuNTf-catalyzed activation of a 1,2--C2--alkynylbenzoate (OABz) substituent of the corresponding thioglycosides. These activation processes trigger 1,2-alkyl/arylthio-migration glycosylation, enabling the synthesis of structurally diverse 2-deoxy-β-glycosides under mild reaction conditions.
View Article and Find Full Text PDFT-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex-vivo. After screening over 2'800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, compared to other blood cancers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115.
The cytoplasmic membrane of bacteria is composed of a phospholipid bilayer made up of a diverse set of lipids. Phosphatidylglycerol (PG) is one of the principal constituents and its production is essential for growth in many bacteria. All the enzymes required for PG biogenesis in have been identified and characterized decades ago.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg 1790 AB, The Netherlands.
Heterocytes, specialized cells for nitrogen fixation in cyanobacteria, are surrounded by heterocyte glycolipids (HGs), which contribute to protection of the nitrogenase enzyme from oxygen. Diverse HGs preserve in the sediment and have been widely used as evidence of past nitrogen fixation, and structural variation has been suggested to preserve taxonomic information and reflect paleoenvironmental conditions. Here, by comprehensive HG identification and screening of HG biosynthetic gene clusters throughout cyanobacteria, we reconstruct the convergent evolutionary history of HG structure, in which different clades produce the same HGs.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Department of Chemistry, Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States.
Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) provides direct analytical readouts of small molecules that can be used to characterize the metabolic phenotypes of genetically engineered bacteria. In an effort to accelerate the time frame associated with the screening of mutant libraries, we have developed a high-throughput DESI-MSI analytical workflow implementing a single raster line-scan strategy that facilitates the collection of location-resolved molecular information from engineered strains on a subminute time scale. Evaluation of this "Fast-Pass" DESI-MSI phenotyping workflow on analytical standards demonstrated the capability of acquiring full metabolic profiling information with a throughput of ∼40 s per sample.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!