Clean conditions for the determination of ultra-low levels of mercury in ice and snow samples.

Fresenius J Anal Chem

Laboratoire de Glaciologie et Géophysique de l'Environnement du CNRS, associé à l'Université Joseph Fourier, Saint Martin D'Heres, France.

Published: March 2000

Laboratory facilities and methods are presented for the determination of ultra-low levels of mercury (Hg) in ice and snow samples originating from polar ice caps or temperate regions. Special emphasis will be given to the presentation of the clean laboratory and the cleaning procedures. The laboratory is pressurized with air filtered through high efficiency particle filters. This first filtration is not enough to get rid of contamination by Hg in air. Experiments are conducted in a clean bench, especially built for Hg analysis, equipped with both particle filter and activated charcoal filter. It allows to obtain very low levels of atmospheric Hg contamination. Ultrapure water is produced for cleaning all the plastic containers that will be used for ice and snow samples and also for the dilution of the standards. Hg content in laboratory water is about 0.08+/-0.02 pg/g. A Teflon system has been developed for the determination of Hg in ice and snow samples based on Hg(II) reduction to Hg(0) with a SnCl2/HNO3 solution followed by the measurement of gaseous Hg(0) with a Hg analyzer GARDIS 1A+ based on the Cold Vapor Atomic Absorption Spectroscopy method. Blank determination is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s002160050088DOI Listing

Publication Analysis

Top Keywords

ice snow
16
snow samples
16
determination ultra-low
8
ultra-low levels
8
levels mercury
8
mercury ice
8
ice
5
clean conditions
4
determination
4
conditions determination
4

Similar Publications

Case studies of different types of precipitation at Ny-Ålesund, Arctic.

Sci Rep

January 2025

Department of Astronomy, Astrophysics and Space Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.

Arctic precipitation plays a crucial role in shaping the surface mass balance of Arctic sea ice and has wide-ranging impacts on local climate, ecosystems, and global sea level dynamics. With the Arctic undergoing warming trends, historical data and climate models indicate a shift from primarily snowfall to a rise in liquid and mixed forms of precipitation. This study tried to explain the microphysical characteristics and atmospheric conditions associated with different forms of precipitation and their transitions.

View Article and Find Full Text PDF

Understanding snow and ice melt dynamics is vital for flood risk assessment and effective water resource management in populated river basins sourced in inaccessible high-mountains. This study provides an AI-enabled hybrid approach integrating glacio-hydrological model outputs (GSM-SOCONT), with different machine learning and deep learning techniques framed as alternative 'computational scenarios, leveraging both physical processes and data-driven insights for enhanced predictive capabilities. The standalone deep learning model (CNN-LSTM), relying solely on meteorological data, outperformed its counterpart machine learning and glacio-hydrological model equivalents.

View Article and Find Full Text PDF

Sea ice thickness is an essential variable to understand and forecast the dynamic ice cover and can be estimated by satellite altimetry. Nevertheless, it is affected by uncertainties especially from snow depth, a key parameter to derive it from ice freeboard. We developed a snow depth product based on the differences between CryoSat-2 SAR Ku and IceSat-2 laser altimeters which have different snow penetration capabilities.

View Article and Find Full Text PDF

Microorganisms are present in snow/ice of the Antarctic Plateau, but their biogeography and metabolic state under extreme local conditions are poorly understood. Here, we show the diversity and distribution of microorganisms in air (1.5 m height) and snow/ice down to 4 m depth at three distant latitudes along a 2578 km transect on the East Antarctic Plateau on board an environmentally friendly, mobile platform.

View Article and Find Full Text PDF

Arctic rivers may be the largest net sources of mercury (Hg) to the Arctic Ocean, yet riverine sources of Hg remain poorly characterized compared to atmospheric processes. This article reviews the current state of knowledge on Hg inputs to the Mackenzie River and Valley in Northern Canada from six point and non-point sources. Point sources include the locations of mines, fossil fuel extraction facilities, and retrogressive permafrost thaw slumps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!