Semliki Forest virus vectors (SFV) are suitable for high-level transgene expression in neuronal tissue, both in vitro and in vivo. Cortical and hippocampal primary neurons in culture are efficiently infected resulting in 75-95% of GFP-positive cells, and injection of SFV vectors into hippocampal slice cultures revealed a highly neuron-specific expression pattern with more than 90% of the infected cells being neurons. Here, we present novel SFV vector mutants and describe their infection patterns obtained in cultures of baby hamster kidney (BHK) cells, dissociated hippocampal neurons, and organotypic hippocampal slices. A less cytotoxic vector SFV(PD), carrying two point mutations in the nsP2 gene, showed much higher GFP expression levels in primary hippocampal neurons compared to the wild-type SFV vector. A triple mutant vector SFV(PDE153) demonstrated a temperature-sensitive phenotype in both BHK cells and primary neurons. In hippocampal slices cultured at 36 degrees C, SFV(PDE153) showed a remarkably higher (ca 250-fold) preference for expression in interneurons rather than in pyramidal cells as compared to wild-type SFV. The quadruple mutant SFV(PDTE) led to substantially increased and prolonged GFP expression in primary neurons. Relative to SFV(PDE153), a more pronounced temperature-sensitive phenotype was found resulting in no virus production and no GFP expression at the non-permissive temperature (36-37 degrees C) in BHK cells, in dissociated neurons, and in organotypic hippocampal slices. The described novel SFV vectors will be useful for several specific applications in neurobiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s004180000223 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Huai'an Hospital Affiliated to Yangzhou University, The Fifth People's Hospital of Huai'an), 1 Huaihe East Road, Huaiyin District, Huai'an City, Jiangsu Province, China.
Ginkgolide B (GB) is a bioactive constituent found in Ginkgo biloba leaves that has been long recognized as a protective agent against many neurological disorders. Our study aimed to examine the effect of GB in an in vitro Parkinson's disease (PD) model and to investigate its neuroprotective mechanism as a primary objective. SK-N-SH cells were challenged with 1-methyl-4-phenylpyridinium (MPP) to act as a PD-like model of neuronal damage.
View Article and Find Full Text PDFInt J Psychoanal
December 2024
Independent Researcher.
This article examines the signification of the principle of constancy in Freud's pre-psychoanalytic drafts and papers and in . It is argued that Freud's principle differs from seemingly similar principles proposed by Breuer and Fechner, and that it constitutes an assumption about the maintaining of a constant amount of mobile biophysical energy whose purpose is to return to equilibrium, but, proceeding from the primary functions of discharge (principle of inertia) and accumulation (exigencies of life), to consolidate an asymmetry within the nervous system. This gives rise to a set of quasi-psychological dualisms: an energetic dualism between kinetic and tonic energy; a systemic dualism between impermeable and permeable neurons; and a processual dualism between courses of the excitation with and without the inhibiting influence of the ego.
View Article and Find Full Text PDFiScience
February 2025
Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
Neurodevelopmental impairments associated with congenital heart disease (CHD) may arise from perturbations in brain developmental pathways, including the formation of sulcal patterns. While genetic factors contribute to sulcal features, the association of noncoding variants (ncDNVs) with sulcal patterns in people with CHD remains poorly understood. Leveraging deep learning models, we examined the predicted impact of ncDNVs on gene regulatory signals.
View Article and Find Full Text PDFMed Phys
January 2025
Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.
Background: High-resolution brain imaging is crucial in clinical diagnosis and neuroscience, with ultra-high field strength MRI systems ( ) offering significant advantages for imaging neuronal microstructures. However, achieving magnetic field homogeneity is challenging due to engineering faults during the installation of superconducting strip windings and the primary magnet.
Purpose: This study aims to design and optimize active superconducting shim coils for a 7 T animal MRI system, focusing on the impact of safety margin, size, and adjustability of the second-order shim coils on the MRI system's optimization.
J Neuroinflammation
January 2025
Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.
Chronic innate immune activation in the central nervous system (CNS) significantly contributes to neurodegeneration in progressive multiple sclerosis (MS). Using multiple experimental autoimmune encephalomyelitis (EAE) models, we discovered that NLRX1 protects neurons in the anterior visual pathway from inflammatory neurodegeneration. We quantified retinal ganglion cell (RGC) density and optic nerve axonal degeneration, gliosis, and T-cell infiltration in Nlrx1 and wild-type (WT) EAE mice and found increased RGC loss and axonal injury in Nlrx1 mice compared to WT mice in both active immunization EAE and spontaneous opticospinal encephalomyelitis (OSE) models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!