The SiO2 gate of an ion-sensitive field-effect transistor, (ISFET), is functionalized with a TiO2 film that includes imprinted molecular sites for 4-chlorophenoxy acetic acid, (1), or 2,4-dichlorophenoxy acetic acid, (2). The functionalized devices that include the imprinted interfaces reveal an impressive selectivity in the sensing of the imprinted substrates Na+ -1 or Na+ -2. The detection limit for Na+ -1 is (5+/-2) x 10(-4) M, which corresponds to 38 mV x dec(-1) in the concentration range of 0.5 to 6 mM. The detection limit for the analysis of Na+ -2 is (1.0+/-0.2) x 10(-5) M, which corresponds to 28 mV dec(-1) in the concentration range 0.1-9.0 mM. The equilibration time of the devices is ca. 5 min.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac000751j | DOI Listing |
Sensors (Basel)
December 2024
CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France.
The development of ion-sensitive field-effect transistor (ISFET) sensors based on silicon nanowires (SiNW) has recently seen significant progress, due to their many advantages such as compact size, low cost, robustness and real-time portability. However, little work has been done to predict the performance of SiNW-ISFET sensors. The present study focuses on predicting the performance of the silicon nanowire (SiNW)-based ISFET sensor using four machine learning techniques, namely multilayer perceptron (MLP), nonlinear regression (NLR), support vector regression (SVR) and extra tree regression (ETR).
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan.
Sensors (Basel)
November 2024
CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France.
Focusing on the ChemFET (chemical field-effect transistor) technology, the development of a multi-microsensor platform for soil analysis is described in this work. Thus, different FET-based microdevices (i.e.
View Article and Find Full Text PDFNature
October 2024
Engineering Science and Mechanics, Penn State University, University Park, PA, USA.
Microsyst Nanoeng
September 2024
Univeristy of Minnesota, 111 Church Street SE, Minneapolis, Minnesota, 55455, US.
Current potentiometric sensing methods are limited to detecting nitrate at parts-per-billion (sub-micromolar) concentrations, and there are no existing potentiometric chemical sensors with ultralow detection limits below the parts-per-trillion (picomolar) level. To address these challenges, we integrate interdigital graphene ion-sensitive field-effect transistors (ISFETs) with a nitrate ion-sensitive membrane (ISM). The work aims to maximize nitrate ion transport through the nitrate ISM, while achieving high device transconductance by evaluating graphene layer thickness, optimizing channel width-to-length ratio (R), and enlarging total sensing area.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!