Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The present study was designed to determine the stability of morphine and its glucuronides in spiked fresh blood and plasma from live individuals as well as in four authentic postmortem blood specimens for a time interval of up to six months. The samples were stored in glass vials at -20 degrees C, 4 degrees C, and 20 degrees C. Additionally, spiked samples were exposed to light through window glass and subjected to a forced-degradation study at 40 degrees C. Data were established using solid-phase extraction and high-performance liquid chromatography coupled to atmospheric pressure ionization mass spectrometry for isolation and quantitation, providing a sensitive and specific detection method for the parent drug in the presence of its glucuronide metabolites. Morphine and its glucuronide metabolites were found to be stable in both blood and plasma at 4 degrees C for the whole observation period. In postmortem blood the analytes were stable only when stored at -20 degrees C. The thermal decomposition of morphine and morphine-6-glucuronide in spiked blood and plasma could be interpreted using pseudo first-order kinetics. Photodegradation of morphine-3-glucuronide in plasma was consistent with a second-order reaction. In postmortem samples the degradation pattern differed completely from that observed in fresh blood and plasma. The elevated morphine levels observed were primarily due to postmortem hydrolysis of morphine glucuronides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jat/25.1.2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!