The prevalence and the clinical gravity of the various histopathological varieties of renal osteodystrophy in dialysis patients depends on the severity of both the aluminium intoxication and that of hyperparathyroidism. The prevalence of bone pains, fractures and hypercalcemias are the highest in adynamic bone diseases (ABD) with severe aluminium intoxication, then in osteitis fibrosa and mixed osteopathy, in the ABD with moderate aluminium intoxication and rare in the mild lesion in spite of similar moderate aluminium intoxication. In the absence of aluminium intoxication, hypercalcemia and hyperphosphatemia prevalence is higher only when intact PTH is more that 4 times the upper limit of normal. When PTH is between 1 and 2 folds the ULN this prevalence is null and bone mineral density is the highest. 2. The low turnover aluminic bone diseases (osteomalacic or adynamic) will be cured by long term deferoxamine treatment. The hazards of such treatment justify the performance of a bone biopsy to ensure the diagnosis. Their prevention relies on adequate treatment of tapwater and definitive exclusion of long term administration of aluminum phosphate binders. 3. Non aluminic osteomalacia will be treated according to the same guidelines given for the uremic patients before dialysis. 4. Non aluminic adynamic bone disease will be cured by means aiming at stimulating PTH secretion as discontinuing 1 alpha hydroxylated vitamin D derivatives, and, if there is no hyperphosphatemia by discontinuation of calcium supplement. In case of hyperphosphatemia in dialysis patients CaCO3 doses have to be nevertheless increased after the dialysate calcium concentration (DCa) has been decreased in order to induce a negative perdialytic calcium balance for PTH secretion stimulation. In the near future substitution of CaCO3 by non calcemic non aluminic phosphate binders will suffice. 5. Osteitis fibrosa due to hyperparathyroidism will be treated first by securing an optimal vitamin D repletion (bringing plasma 25OH vitamin D around 30 and 60 ng/ml or 75-150 nmol/l) and by correcting hypocalcemia and hyperphosphatemia by CaCO3 at high doses (3-12 g/day) taken with the meals. In case of hypercalcemia dialysate calcium concentration will be decreased to correct it or, in a near future, CaCO3 will be decreased to 3 g/day and hyperphosphatemia will be controlled by non calcemic, non aluminic phosphate binders. When hyperphosphatemia is controlled whereas plasma calcium is normal or low, 1 alpha hydroxylated vitamin D derivatives can be administered. 6. Instrumental parathyroidectomy should be considered when plasma levels of intact PTH remain above 7 folds the upper limit of normal whereas hyperphosphatemia persists and hypercalcemia occurs in order to prevent thining of the corticals and subsequent fracture risk. In case of previous exposition to aluminum, a deferoxamine test and/or a bone biopsy will be performed to decide a long term DFO treatment before the parathyroidectomy in order to prevent the transformation of a mixed osteopathy into an aluminic adynamic bone disease. 7. The difficulty of hyperparathyroidism control in dialysis patients is due to poor compliance to phosphate binders and to irreversible parathyroid hyperplasia with occured before the dialysis stage. This stress the primary importance if its early prevention without iatrogenia by first CaCO3 and vitamin D repletion, as soon as the creatinine clearance decreases below 60 ml/min/1.73 m2.
Download full-text PDF |
Source |
---|
Exp Gerontol
December 2024
Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan. Electronic address:
Aluminum chloride (AlCl), a known neurotoxic and Alzheimerogenic metal disrupts redox homeostasis which plays a pivotal role in pathophysiology of neurodegenerative disorders, particularly cognitive decline. The current study was designed to unveil the long-term neuroprotective outcomes and efficacy of CoQ10 and curcumin low dose (100 mg/kg each) combination in 18-months old geriatric male Balb/c mice subjected to AlCl-prompted memory derangements (200 mg/kg in water bottles) for 28 days. The neuroprotective properties driven by antioxidant mechanisms were assessed via observing cellular pathology in key-memory related brain regions including the cornuammonis (CA3 and DG) and cortex 2/3 layer.
View Article and Find Full Text PDFActa Med Philipp
October 2024
Department of Anatomy, College of Medicine, University of the Philippines Manila.
Objective: The aim of this study was to investigate the protective effects of BIOTECH 1766 against oxidative damage in the brain, liver, and kidneys induced by aluminum (Al) poisoning in ICR mice.
Methods: Twenty mice were divided into four groups (n = 5): (I) control, (II) Al, (III) citric acid (CA), and (IV) BIOTECH 1766 group. A 14-day treatment period was implemented, wherein groups I and II received sterile water, while groups III and IV received 10 mg/kg bw of CA and 1 x 10 cfu/kg bw of BIOTECH 1766, respectively.
Vet World
September 2024
Department of Anatomy, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Background And Aim: Aluminum (Al)-induced neurotoxicity is known to play a pivotal role in the development of various neurodegenerative diseases, and this is alleged to occur through neuroinflammation and oxidative stress in the brain. This study aimed to determine the effect of a (FR) leaf extract on oxidative stress and neuroinflammation induced by Al exposure in the rat brain by estimating malondialdehyde (MDA), interleukin-6 (IL6), and total antioxidant (TAO) levels along with the degree of neurodegeneration in the brain of AlCl-administered and F leaf extract-treated rats.
Materials And Methods: Two- to three-month-old male albino rats weighing 250-280 g were used in the present study.
Toxicol Ind Health
November 2024
Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
Aluminium, a ubiquitous environmental toxicant, is distinguished for eliciting a broad range of physiological, biochemical, and behavioural alterations in laboratory animals and humans. The present work was conducted to study the functional and structural changes induced by aluminium in rat liver. Twenty five adult male Wistar rats (150-200 g) were randomly divided into five groups; control group and four Al-treated groups viz: Al 1 (25 mg AlCl/kg b.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!