Antimutagenesis studies of magnesium and calcium salts.

J Environ Pathol Toxicol Oncol

Istituto di Mutagenesi e Differenziamento, Consiglio Nazionale delle Ricerche, Pisa, Italy.

Published: February 2001

Magnesium is a microelement that is essential for biological functions and particularly for cellular metabolism. It has a central role in protein, lipid, carbohydrate, and nucleic acid synthesis, and it is important for muscular physiology and nerve excitability. Magnesium has an important role in the stability of biological membranes, it controls immune phenomena, and it activates over 300 enzymes. However, the mechanism of action of magnesium salts has not been well investigated and, in particular, its antimutagenesis properties and its effects in the detoxification of free radicals need further study. We investigated the effect of magnesium chloride, sulphate, carbonate, and oxide on the yeast Saccharomyces cerevisiae D7 strain, to evaluate their ability to protect against genotoxic damage. We found that magnesium salts induced antimutagenic effects in the cells harvested in the logarithmic phase by decreasing the induction of hydrogen peroxide. This, however, did not occur in the stationary phase. We also studied calcium salts of the type corresponding to those of magnesium and their protective role against the oxidative damage of free radicals and enzymatic activities, such as catalase, glutathione peroxidase, and superoxide dismutase, which are involved in antioxidative defenses.

Download full-text PDF

Source

Publication Analysis

Top Keywords

calcium salts
8
magnesium salts
8
free radicals
8
magnesium
7
antimutagenesis studies
4
studies magnesium
4
magnesium calcium
4
salts
4
salts magnesium
4
magnesium microelement
4

Similar Publications

Comparative Analyses of the Safety Profiles of Vitamin D Receptor Agonists: A Pharmacovigilance Study Based on the EudraVigilance Database.

Pharmaceuticals (Basel)

December 2024

Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania.

: Vitamin D receptor (VDR) agonists are commonly used in clinical practice for their roles in calcium regulation and potential benefits in various diseases. However, their safety profiles, particularly for compounds available as food supplements, remain underexplored in real-world settings. This study aimed to analyze the safety profiles of VDR agonists using the EudraVigilance database, focusing on adverse drug reactions (ADRs) reported between 1 January 2004 and 23 June 2024.

View Article and Find Full Text PDF

In this paper, the enhancement of thermochemical energy storage by alkali metal chloride salts-doped Ca-based sorbents is revealed by experiments and DFT calculations. The results indicate that NaCl and KCl doping increases the reaction rate and cycle stability. Compared to CaO, the conversion of NaCl-CaO and KCl-CaO after one cycle is increased by 59.

View Article and Find Full Text PDF

: Nephrocalcinosis (NC) is a common condition characterized by the deposition of calcium salts in the kidneys of very preterm infants due to tubular immaturity, intensive treatment and nutritional supplements. However, optimal vitamin D supplementation remains unclear. In most patients, NC spontaneously resolves within the first year of life, but long-term kidney function data are lacking.

View Article and Find Full Text PDF

[Parenteral nutrition in neonatology and pediatrics: physicochemical stability, risks and precautions. Narrative review].

Andes Pediatr

October 2024

Departamento de Gastroenterología y Nutrición Pediátrica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.

Parenteral nutrition is a high-risk therapy due to some of its components and the exceptional inclusion of drugs. It can contain more than 50 nutrients, with different characteristics of osmolarity, ionic charge, and pH, which can affect its physicochemical stability. In addition, environmental conditions such as light, temperature, and oxygen must be considered.

View Article and Find Full Text PDF

Recovery and purification of acetic acid from extremely diluted solutions using a mixed bed ion exchange resin - technical feasibility.

RSC Adv

January 2025

TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de San Sebastián Mikeletegi Pasealekua 2 20009 Donostia-San Sebastián Spain +34 944 041 445 +34 946 430 850.

A downstream process for the recovery and purification of acetic acid (AA) from an extremely diluted solution (100 mg L) also containing a mixture of contaminating inorganic salts in the form of bicarbonates, phosphates, sulfates and chlorides (DPM medium) has been developed, showing its technical feasibility. The process involves two successive steps based on the use of a mixed bed ion exchange (IEX) resin. The first step, a demineralization treatment to remove the inorganic anions that could potentially interfere with the recovery and purification of AA, involves a combined treatment of calcium precipitation, acidification with the Amberlite IR-120 resin and treatment with the Amberlite MB20 mixed bed resin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!