Peanut meal naturally contaminated with 3.5 mg/kg aflatoxin B1 (AFB1) was spiked with radiolabelled AFB1 (meal 14C-I0) and decontaminated by a small-scale copy of an industrial ammoniation process (meal 14C-I1). During the process 15% of the radioactivity was lost, whereas 90% of the remaining radiolabel could not be extracted from the meal. In the extractable part, AFB1 accounted for 10% of the radiolabel, consistent with a total AFB1 reduction of more than 99%. No degradation products were observed in the extracts. Four lactating cows were fed with a diet containing 15% of either meal 14C-I0 or 14C-I1 for 10 days. On day 9 of this treatment, respectively 23 and 67% of the radiolabel was excreted in the urine and faeces of cows fed meal 14C-I0, as compared with 2 and 101% in the case of cows fed meal 14C-I1. Milk contained respectively 1.35 (meal 14C-I0) and 0.25% (meal 14C-I1) of the radiolabel. Milk samples taken during the equilibrium stage contained respectively 5 and 0.5 ng/ml of AFB1-derived compounds. Aflatoxin M1 (AFM1) accounted for 50-80% of these compounds in the case of milk from cows fed 14C-I0, as compared with 6-20% in the case of 14C-I1. AFB1 to AFM1 carry-over rates for 14C-I0 or 14C-I1 were estimated to be respectively 0.5 and 5.9%. Only liver and kidney samples contained detectable levels of the radiolabel, being respectively 260 and 37 micrograms/kg for cows fed meal 14C-I0, and 10 and 3 micrograms/kg for those fed meal 14C-I1. In the latter case, more than 55% of the radiolabel in the liver could not be extracted, as compared with 90% in the group fed meal 14C-I1. A small part of the extractable radiolabel in the livers of cows fed meal 14C-I0 could be attributed to AFB1 and AFM1 (less than 1% of total radioactivity). In the case of the animals fed 14C-I1 there were indications for the presence of AFB1 and AFM1 (6% of total radioactivity). Decontamination of the highly contaminated (non-radiolabelled) peanut meal by two different industrial ammoniation processes, resulted in a similar reduction of the initial AFB1 levels of 3.5 mg/kg to 15 micrograms/kg. Feeding of diets containing 15% of the non-treated and two treated peanut meals to cows for a period of 10 days, resulted in AFM1 levels in milk of respectively 2.1, 0.04 and 0.07 ng/ml. AFB1 to AFM1 carry-over rates were calculated to be respectively 0.5, 2.0, and 3.6%. It is concluded that the efficient reduction of aflatoxin levels by ammoniation of contaminated peanut meal results in a strong reduction of aflatoxin-related residues in milk and meat of cows, most likely caused by a decreased bioavailability of the degradation products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02652030010009165 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!