Brain tissue classification of magnetic resonance images using partial volume modeling.

IEEE Trans Med Imaging

Greyc-Ismra, Cnrs Umr 6072, Caen, France.

Published: December 2000

This paper presents a fully automatic three-dimensional classification of brain tissues for Magnetic Resonance (MR) images. An MR image volume may be composed of a mixture of several tissue types due to partial volume effects. Therefore, we consider that in a brain dataset there are not only the three main types of brain tissue: gray matter, white matter, and cerebro spinal fluid, called pure classes, but also mixtures, called mixclasses. A statistical model of the mixtures is proposed and studied by means of simulations. It is shown that it can be approximated by a Gaussian function under some conditions. The D'Agostino-Pearson normality test is used to assess the risk alpha of the approximation. In order to classify a brain into three types of brain tissue and deal with the problem of partial volume effects, the proposed algorithm uses two steps: 1) segmentation of the brain into pure and mixclasses using the mixture model; 2) reclassification of the mixclasses into the pure classes using knowledge about the obtained pure classes. Both steps use Markov random field (MRF) models. The multifractal dimension, describing the topology of the brain, is added to the MRFs to improve discrimination of the mixclasses. The algorithm is evaluated using both simulated images and real MR images with different T1-weighted acquisition sequences.

Download full-text PDF

Source
http://dx.doi.org/10.1109/42.897810DOI Listing

Publication Analysis

Top Keywords

brain tissue
12
partial volume
12
pure classes
12
brain
8
magnetic resonance
8
resonance images
8
volume effects
8
types brain
8
tissue classification
4
classification magnetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!