A new anaerobic, thermophilic, CO-utilizing marine bacterium, strain JMT, was isolated from a submarine hot vent in Okinawa Trough. Cells of strain JMT were non-motile thin straight rods, sometimes branching, with a cell wall of the Gram-positive type, surrounded with an S-layer. Chains of three to five cells were often observed. The isolate grew chemolithotrophically on CO, producing equimolar quantities of H2 and CO2 (according to the equation CO+H2O-->CO2+H2) and organotrophically on peptone, yeast extract, starch, cellobiose, glucose, galactose, fructose and pyruvate, producing H2, acetate and CO2. Growth was observed from 50 to 80 degrees C with an optimum at 70 degrees C. The optimum pH was 6.8-7.1. The optimum concentration of sea salts in the medium was 20.5-25.5 g l(-1). The generation time under optimal conditions was 7.1 h. The DNA G+C content was 33 mol %. Growth of isolate JMT was not inhibited by penicillin, but ampicillin, streptomycin, kanamycin and neomycin completely inhibited growth. The results of 16S rDNA sequence analysis revealed that strain JMT belongs to the Thermoanaerobacter phylogenetic group within the Bacillus-Clostridium subphylum of Gram-positive bacteria but represents a separate branch of this group. On the basis of morphological and physiological features and phylogenetic data, this isolate should be assigned to a new genus, for which the name Carboxydobrachium is proposed. The type species is Carboxydobrachium pacificum; the type strain is JMT (= DSM 12653T).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/00207713-51-1-141 | DOI Listing |
Nutrients
August 2024
TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium.
Acetate-producing var. strains could exert improved effects on ulcerative colitis, which here, was preclinically evaluated in an acute dextran sodium sulphate induced model of colitis. Nine-week-old female mice were divided into 12 groups, receiving either drinking water or 2.
View Article and Find Full Text PDFEur Heart J Cardiovasc Imaging
September 2024
Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Catalonia, Spain.
Aims: Longitudinal dyssynchrony correction and 'strain' improvement by comparable cardiac resynchronization therapy (CRT) techniques is unreported. Our purpose was to compare echocardiographic dyssynchrony correction and 'strain' improvement by conduction system pacing (CSP) vs. biventricular pacing (BiVP) as a marker of contractility improvement during 1-year follow-up.
View Article and Find Full Text PDFAppl Environ Microbiol
June 2024
NovelYeast bv, Bio-Incubator BIO4, Leuven-Heverlee, Belgium.
FEMS Yeast Res
January 2024
Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Belgium.
Major progress in developing Saccharomyces cerevisiae strains that utilize the pentose sugar xylose has been achieved. However, the high inhibitor content of lignocellulose hydrolysates still hinders efficient xylose fermentation, which remains a major obstacle for commercially viable second-generation bioethanol production. Further improvement of xylose utilization in inhibitor-rich lignocellulose hydrolysates remains highly challenging.
View Article and Find Full Text PDFNeurol Genet
October 2023
From the Department of Neurology (K.B., J.D., N.A., B.G.M.E., N.C.V.), Donders Institute for Brain, Cognition and Behaviour; Department of Pediatric Neurology (K.B., C.E.E.), Donders Institute for Brain, Cognition and Behaviour, Amalia Children's Hospital; Department of Rehabilitation (J.T.G.), Donders Institute for Brain, Cognition and Behaviour; Department of Pediatric Cardiology (F.E.A.U.C.), Amalia Children's Hospital; Department of Cardiology (F.M.A.H., R.N.); Department of Human Genetics (E.-J.K.); Department of Pediatrics (A.T.M.D., J.M.T.D.), Radboud Institute for Health Sciences, Amalia Children's Hospital; and Department of Internal Medicine (M.C.H.J.), Radboud University Medical Center, Nijmegen, The Netherlands.
Background And Objectives: -related muscular dystrophy (-MD) is a rare neuromuscular disease characterized by proximal and axial muscle weakness, rigidity of the spine, scoliosis, and respiratory impairment. No curative treatment options exist, yet promising preclinical studies are ongoing. Currently, there is a paucity on natural history data, and appropriate clinical and functional outcome measures are needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!