Optical recordings of taste responses from fungiform papillae of mouse in situ.

J Physiol

Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan.

Published: January 2001

Single taste buds in mouse fungiform papillae consist of approximately 50 elongated cells (TBCs), where fewer than three TBCs have synaptic contacts with taste nerves. We investigated whether the non-innervated TBCs were chemosensitive using a voltage-sensitive dye, tetramethylrhodamine methyl ester (TMRM), under in situ optical recording conditions. Prior to the optical recordings, we investigated the magnitude and polarity of receptor potentials under in situ whole-cell clamp conditions. In response to 10 mM HCl, several TBCs were depolarized by approximately 25 mV and elicited action potentials, while other TBCs were hyperpolarized by approximately 12 mV. The TBCs eliciting hyperpolarizing receptor potentials also generated action potentials on electrical stimulation. A mixture of 100 mM NaCl, 10 mM HCl and 500 mM sucrose depolarized six TBCs and hyperpolarized another three TBCs out of 13 identified TBCs in a taste bud viewed by optical section. In an optical section of another taste bud, 1 M NaCl depolarized five TBCs and hyperpolarized another two TBCs out of 11 identified TBCs. The number of chemosensitive TBCs was much larger than the number of innervated TBCs in a taste bud, indicating the existence of chemosensitivity in non-innervated TBCs. There was a tendency for TBCs eliciting the same polarity of receptor potential to occur together in taste buds. We discuss the role of non-innervated TBCs in taste information processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2278412PMC
http://dx.doi.org/10.1111/j.1469-7793.2001.0287l.xDOI Listing

Publication Analysis

Top Keywords

tbcs
17
non-innervated tbcs
12
tbcs hyperpolarized
12
tbcs taste
12
taste bud
12
optical recordings
8
taste
8
fungiform papillae
8
taste buds
8
three tbcs
8

Similar Publications

The microbial pollution status of river surface water is important to ensure a river-based quality drinking water supply for the public. The present study aimed to investigate bacterial contamination status in the upper Mahaweli River, the main drinking water supplier to the hill country of Sri Lanka. Both the raw surface water and treated water, taken at 14 drinking water treatment plants (DWTPs) along the river segment of 60 km between Kotmale and Victoria reservoirs, were tested for total bacterial counts (TBC), total coliform counts (TCC) and faecal coliform counts (FCC).

View Article and Find Full Text PDF

CMAS Corrosion Behavior of Mid-Entropy Rare-Earth Hafnate (YGdYb)HfO as Thermal Barrier Coating Candidate.

Materials (Basel)

December 2024

Tianjin Key Laboratory of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.

High-temperature CMAS corrosion has become a crucial factor inhibiting the further development of thermal barrier coatings (TBCs) because of the increasing service temperature of aero-engines. Herein, a novel mid-entropy rare-earth hafnate (YGdYb)HfO (YGYbH) was prepared by ultrafast high-temperature sintering (UHS) technology, and its CMAS corrosion behavior and mechanism were investigated. During corrosion, the CaRE(SiO)O apatite phase with a lower formation enthalpy and entropy-stabilized effect had a more intense tendency to be generated, which improves the density and stability of the reaction layer, hindering the further penetration of molten CMAS.

View Article and Find Full Text PDF

This paper establishes a finite element model that includes the interface roughness characteristics to evaluate the stress concentration in the atmospheric plasma sprayed (APS) thermal barrier coatings (TBCs) with an uneven temperature field. We further scrutinize the effects of crack initiation at the interface between the thermally grown oxide (TGO) and the bond coat (BC) and in the ceramic top-coat (TC) on stress redistribution by introducing the debonding model for crack analysis. Results indicate that the interfacial residual stress σ achieves the critical value at the end of the cooling stage.

View Article and Find Full Text PDF

In this study, GdO and YbO co-doped YSZ (GYYSZ) ceramic coatings were prepared via atmospheric plasma spraying (APS). The GYYSZ ceramic coatings were subjected to heat treatment at different temperatures for 5 h to analyze their high-temperature phase stability and sintering resistance. The thermophysical properties of GYYSZ, YSZ, and composite coatings were compared.

View Article and Find Full Text PDF

Intelligent temperature measuring thermal spray multilayer thermal barrier coatings based on embedded thin film thermocouples.

J Colloid Interface Sci

February 2025

National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China.

Thermal barrier coatings (TBCs) have garnered significant attention as crucial protective components for turbine blades. However, the current use of TBCs is limited by their singular functionality and the inability to accurately obtain the temperature gradient distribution within the coatings. Addressing the aforementioned issues, this paper proposes an intelligent thermal barrier coating embedded with thin-film thermocouples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!