Noradrenergic and GABAergic systems in the medial hypothalamus influence plasma glucose and may be activated during glucoprivation. Microdialysis probes were placed into the ventromedial nucleus (VMH), lateral hypothalamus (LHA), and paraventricular nucleus (PVH) of male Sprague-Dawley rats to monitor extracellular concentrations of norepinephrine (NE) and GABA. During systemic hypoglycemia, induced by insulin (1.0 U/kg), NE concentrations increased in the VMH (P < 0.05) and PVH (P = 0.06) in a bimodal fashion during the first 10 min and 20-30 min after insulin administration. In the VMH, GABA concentrations increased (P < 0.05) in a similar manner as NE. Extracellular NE concentrations in the LHA were slightly lower (P = 0.13), and GABA levels remained at baseline. The increases in NE and GABA in the VMH were absent during euglycemic clamp; however, NE in the PVH still increased, reflecting a direct response to hyperinsulinemia. On the basis of these data, we propose that the activity of noradrenergic afferents to the medial hypothalamus is increased during hypoglycemia and influences the activity of local GABAergic systems to activate appropriate physiological compensatory mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.2001.280.2.R563 | DOI Listing |
ACS Chem Neurosci
January 2025
Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD Maastricht, The Netherlands.
As the main inhibitory neurotransmission system, the GABAergic system poses an interesting yet underutilized target for molecular brain imaging. While PET imaging of postsynaptic GABAergic neurons has been accomplished using radiolabeled benzodiazepines targeting the GABA receptor, the development of presynaptic radioligands targeting GABA transporter 1 (GAT1) has been unsuccessful thus far. Therefore, we developed a novel GAT1-addressing radioligand and investigated its applicability as a PET tracer in rodents.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana.
Purpose: Major depressive disorder is one of the most common and burdensome psychiatric disorders worldwide. This study evaluated the anxiolytic- and antidepressant-like activity of three semi-synthetic derivatives of xylopic acid (XA) to identify the most promising derivative based on mechanism(s) of action, in vivo pharmacokinetics and in vitro cytotoxicity.
Methods: The anxiolytic potential and the involvement of GABAergic mechanisms were assessed in the elevated plus-maze and open field tests in mice.
Chronic stress profoundly affects the structure and function of the prefrontal cortex (PFC), a brain region critical for executive functions and emotional regulation. This review synthesizes current knowledge on stress-induced PFC plasticity, encompassing structural, functional, and molecular changes. We examine how chronic stress leads to dendritic atrophy, spine loss, and alterations in neuronal connectivity within the PFC, particularly affecting the medial PFC.
View Article and Find Full Text PDFPharmacol Ther
January 2025
Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran. Electronic address:
While benzodiazepines have been a mainstay of the pharmacotherapy of anxiety disorders, their short-term efficacy and risk of abuse have driven the exploration of alternative treatment approaches. The endocannabinoid (eCB) system has emerged as a key modulator of anxiety-related processes, with evidence suggesting dynamic interactions between the eCB system and the GABAergic system, the primary target of benzodiazepines. According to the existing literature, the activation of the cannabinoid receptors has been shown to exert anxiolytic effects, while their blockade or genetic deletion results in heightened anxiety-like responses.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary.
Background: N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!