A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Two distinct pathways for the invasion of Streptococcus pyogenes in non-phagocytic cells. | LitMetric

Two distinct pathways for the invasion of Streptococcus pyogenes in non-phagocytic cells.

Cell Microbiol

Department of Microbial Pathogenicity and Vaccine Research, National Research Centre for Biotechnology, Braunschweig, Germany.

Published: April 2000

Adherence to and invasion of epithelial cells represent important pathogenic mechanisms of Streptococcus pyogenes. A fibronectin-binding surface protein of S. pyogenes, Sfbl protein, has been implicated in both adherence and invasion processes. Invasion of Sfbl-containing strains has been suspected to be responsible for the failure of antibiotics treatment to eradicate S. pyogenes. In this study, we tested the adherence and invasion properties of two well-characterized clinical isolates: A40, which expresses Sfbl; and A8, which is Sfbl negative and is unable to bind fibronectin. In strain A40, Sfbl was the main factor required for attachment and invasion by using fibronectin as a bridging molecule and the alpha5beta1 integrin as cellular receptor. The uptake process was characterized by the generation of large membrane invaginations at the bacteria-cell interface without evidence of actin recruitment or cellular injury. A40 cells were located in phagosomes and, only 24 h after infection, a consistent part of the bacterial population reached the cytoplasm. In contrast, uptake of strain A8 required major rearrangements of cytoskeletal proteins underneath attached bacteria. In A8, a proteinaceous moiety was involved, which does not interact with alpha5beta1 or need any known bridging molecule. Bacterial attachment stimulated elongation and massive recruitment of neighbouring microvilli, which fused to surround streptococcal chains. They led to the generation of large pseudopod-like structures, which engulfed bacteria that were rapidly released and replicated in the cytoplasm. The identification of two completely different uptake pathways reported here provided further evidence regarding the diversity of S. pyogenes isolates and might contribute towards understanding the pathogenesis and persistence of S. pyogenes.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1462-5822.2000.00040.xDOI Listing

Publication Analysis

Top Keywords

adherence invasion
12
streptococcus pyogenes
8
bridging molecule
8
generation large
8
invasion
6
pyogenes
6
distinct pathways
4
pathways invasion
4
invasion streptococcus
4
pyogenes non-phagocytic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!