AI Article Synopsis

Article Abstract

Electromagnetically induced transparency is a quantum interference effect that permits the propagation of light through an otherwise opaque atomic medium; a 'coupling' laser is used to create the interference necessary to allow the transmission of resonant pulses from a 'probe' laser. This technique has been used to slow and spatially compress light pulses by seven orders of magnitude, resulting in their complete localization and containment within an atomic cloud. Here we use electromagnetically induced transparency to bring laser pulses to a complete stop in a magnetically trapped, cold cloud of sodium atoms. Within the spatially localized pulse region, the atoms are in a superposition state determined by the amplitudes and phases of the coupling and probe laser fields. Upon sudden turn-off of the coupling laser, the compressed probe pulse is effectively stopped; coherent information initially contained in the laser fields is 'frozen' in the atomic medium for up to 1 ms. The coupling laser is turned back on at a later time and the probe pulse is regenerated: the stored coherence is read out and transferred back into the radiation field. We present a theoretical model that reveals that the system is self-adjusting to minimize dissipative loss during the 'read' and 'write' operations. We anticipate applications of this phenomenon for quantum information processing.

Download full-text PDF

Source
http://dx.doi.org/10.1038/35054017DOI Listing

Publication Analysis

Top Keywords

atomic medium
12
light pulses
8
electromagnetically induced
8
induced transparency
8
laser fields
8
coupling laser
8
probe pulse
8
laser
7
observation coherent
4
coherent optical
4

Similar Publications

Human lens epithelial cells (hLECs) are critical for lens transparency, and their aberrant metabolic activity and gene expression can lead to cataract. Intracellular delivery to hLECs, especially to sub-cellular organelles (e.g.

View Article and Find Full Text PDF

Doping in pure materials causes vital alterations in opto-electrical and physicochemical characteristics, which enable the produced doped material to be highly efficient and effective. The current work focused on the synthesis of C/N-co-doped-ZnO nanorods a facile, eco-friendly, and solvent-free mechano-thermal approach. The synthesized C/N-co-doped ZnO nanorods were employed for the photocatalytic decay of methylene blue (MB) and brilliant cresyl blue (BCB) dyes, and their degradation capability was compared with that of pure ZnO nanoparticles prepared a precipitation approach.

View Article and Find Full Text PDF

Accumulation of plastic waste is an alarming environmental concern across globe. For which, microbial degradation offers an efficient ecofriendly solution. Thus, the present study focuses on the exploration of new bacterium that can grow on and utilize polyethylene.

View Article and Find Full Text PDF

Compared with the energetically favorable 5- or 6-membered fluoro-functionalized heterocycles, the construction of medium-sized fluoro-heterocycles is relatively under-researched because of their inherently unfavorable enthalpic and entropic nature. Based on rational design and DFT calculations, a novel photocatalytic difluoromethyl radical-initiated intramolecular 7--trig cyclization was realized, thus affording a sustainable route for the synthesis of challenging fluoro-functionalized medium-sized -heterocycles. Depending on atomic dipole moment corrected Hirshfeld population (ADCH) charge calculations, the chemoselective 6--trig radical cyclizations were further replenished.

View Article and Find Full Text PDF

This work presents an optimization of the construction, treatment, and activation of 3D-printed electrochemical sensors (E-3D). For this, was used a 2-full factorial design examining three key variables at two levels: electrode height, electrode diameter, and printing speed. Moreover, it evaluates various physical, chemical, and electrochemical methods to treat and activate the E-3D surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!