Accuracy of velocity estimation by Reichardt correlators.

J Opt Soc Am A Opt Image Sci Vis

Department of Zoology, University of Cambridge, UK.

Published: February 2001

Although a great deal of experimental evidence supports the notion of a Reichardt correlator as a mechanism for biological motion detection, the correlator does not signal true image velocity. This study examines the accuracy with which realistic Reichardt correlators can provide velocity estimates in an organism's natural visual environment. The predictable statistics of natural images imply a consistent correspondence between mean correlator response and velocity, allowing the otherwise ambiguous Reichardt correlator to act as a practical velocity estimator. Analysis and simulations suggest that processes commonly found in visual systems, such as prefiltering, response compression, integration, and adaptation, improve the reliability of velocity estimation and expand the range of velocities coded. Experimental recordings confirm our predictions of correlator response to broadband images.

Download full-text PDF

Source
http://dx.doi.org/10.1364/josaa.18.000241DOI Listing

Publication Analysis

Top Keywords

velocity estimation
8
reichardt correlators
8
reichardt correlator
8
correlator response
8
correlator
5
velocity
5
accuracy velocity
4
reichardt
4
estimation reichardt
4
correlators great
4

Similar Publications

In this paper, the usage of a predictive surrogate model for the estimate of flow variables in the transient phase of coolant injection from the nose cone by combining the Long Short-Term Memory (LSTM) and Proper Orthogonal Decomposition (POD) technique. The velocity, pressure, and mass fraction of the counterflow jet is evaluated via this hybrid technique and the source of discrepancy of a predictive surrogate model with Full order model is explained in this study. The POD modes for the efficient prediction of the different flow variables are defined.

View Article and Find Full Text PDF

Interaction of cesium compounds with abundant inorganic compounds of atmosphere: Effect on cloud formation potential and settling.

J Hazard Mater

January 2025

Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.

Experiments were conducted in controlled laboratory conditions to determine the size-resolved CCN (Cloud Condensation Nuclei) activity of sub micrometer-sized aerosols containing nuclear fission products (CsI and CsOH) and abundant ambient inorganic aerosols ammonium sulphates ((NH)SO), ammonium chloride (NHCl), sodium nitrate (NaNO), and sodium chloride (NaCl). The presence of these atmospheric-relevant compounds internally mixed with fission product compounds has the potential to affect the capacity of ambient particulates of aerosols to absorb water and function as CCN. Once in the atmosphere, the dynamics of airborne radionuclides and subsequently their fate gets affected by dry and wet deposition processes.

View Article and Find Full Text PDF

Field-Testing Measures Related to Youth Baseball Hitting Performance.

J Strength Cond Res

February 2025

Sports Medicine and Movement Laboratory, School of Kinesiology, Auburn University, Auburn Alabama.

Bordelon, NM, Agee, TW, Wasserberger, KW, Downs-Talmage, JL, Everhart, KM, and Oliver, GD. Field-testing measures related to youth baseball hitting performance. J Strength Cond Res 39(2): 210-216, 2025-The purpose of the study was to determine the relationship between field tests and youth hitting performance (batted-ball velocity).

View Article and Find Full Text PDF

: The impact of shoe stiffness on running biomechanics is well-documented, while the specific effect on the performance of biomechanically distinct groups such as novice runners and experienced runners is still largely unexplored. The study aimed to evaluate the biomechanical effect of different shoe longitudinal bending stiffness on the lower limb during running in novice runners and experienced runners. : Twelve experienced runners and ten novice runners ran at a speed of 4.

View Article and Find Full Text PDF

Magnetorheological (MR) fluid (MRF) dampers, serving as fail-safe semi-active devices, exhibit nonlinear hysteresis characteristics, emphasizing the necessity for accurate modeling to formulate effective control strategies in smart systems. This paper introduces a novel stop operator-based Prandtl-Ishlinskii (PI) model, featuring a reduced parameter set (seven), designed to estimate the nonlinear hysteresis properties of a large-scale bypass MRF damper with variable stiffness capabilities under varying applied current. With only seven parameters, the model realizes current, displacement, and rate dependencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!