p73, a recently identified gene showing high homology to p53 and mapping to 1p36.33, was presented as a candidate gene for neuroblastoma. In this study the authors evaluate the levels and allelic nature of p73 expression in primary neuroblastomas using reverse transcription-polymerase chain reaction-restriction fragment length polymorphism strategies based on intragenic polymorphisms. From 32 neuroblastoma patients, 11 were heterozygous for the p73 polymorphisms analyzed. p73 expression was found to be low in the correspondent tumors and while all 6 stages 1 and 2 tumors presented biallelic expression, 4 out of the 5 stage 4 tumors showed only one active p73 allele. Analysis of blood samples from 8 healthy donors and 4 neuroblastoma patients revealed much higher levels of p73 expression, and exclusively of biallelic nature. These results are supportive of a role for p73 in the biology of neuroblastoma, particularly in some advanced tumors. Nevertheless, the G81A/C91T polymorphism, previously implicated in regulating the expression of p73, did not show any significant association with neuroblastoma development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/088800101750059846 | DOI Listing |
Cell Biochem Funct
January 2025
Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, China.
The study of the mechanism of oligoasthenospermia, which is a major cause of male infertility, has been the focus of research in the field of male reproduction. TAp73, a member of the p53 family of oncogenes, is endowed with tumor-suppressing activity due to its structural and functional homology with p53. It has been found that TAp73, plays a key role in spermatogenesis and maintaining male reproduction.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Department of Medical Science and Biotechnology, I-Shou University, Kaohsiung City 82445, Taiwan. Electronic address:
Head and neck squamous cell carcinoma (HNSCC) cells have a high p53 mutation rate, but there were rare reported about the p53 gain of function through the prion-like aggregated form in p53 mutated HNSCC cells. Thioflavin T (ThT) is used to stain prion-like proteins in cells. Previously, we found that ThT and p53 staining were co-localized in HNSCC cells (Detroit 562 cells) with homozygous p53 R175H mutation.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China.
The mechanism by which DNA-damage affects self-renewal and pluripotency remains unclear. DNA damage and repair mechanisms have been largely elucidated in mutated cancer cells or simple eukaryotes, making valid interpretations on early development difficult. Here we show the impact of ionizing irradiation on the maintenance and early differentiation of mouse embryonic stem cells (ESCs).
View Article and Find Full Text PDFSci Rep
December 2024
Research Center for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 656 53, Czech Republic.
Biol Direct
November 2024
Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.
Here, we investigated the potential interaction between bromodomain-containing protein 4 (BRD4), an established epigenetic modulator and transcriptional coactivator, and p63, a member of the p53 transcription factor family, essential for epithelial development and skin homeostasis. Our protein-protein interaction assays demonstrated a strong and conserved physical interaction between BRD4 and the p53 family members-p63, p73, and p53-suggesting a shared binding region among these proteins. While the role of BRD4 in cancer development through its interaction with p53 has been explored, the effects of BRD4 and Bromodomain and Extra Terminal (BET) inhibitors in non-transformed cells, such as keratinocytes, remain largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!