Intracellular regulation of inward rectifier K+ channels.

Pflugers Arch

Dept. of Physiology II, University of Tübingen, Germany.

Published: November 2000

Inward rectifier potassium (Kir) channels comprise a relatively young gene family of ion channels whose first member was isolated in 1993. A common property its members share is a strong dependence on intracellular regulators such as polyamines, nucleotides, phospholipids, kinases, pH and guanosine-triphosphate-binding proteins (G-proteins). The physiological role of Kir channels is to modulate the excitability and secretion of potassium (K+) to maintain K+ homeostasis, under the control of various intracellular second messengers. Structurally, Kir channels are assembled from four alpha-subunits each carrying the prototypic K+-channel pore region lined by two transmembrane segments with intracellular N- and C-termini. The exact molecular mechanism of Kir channel gating by intracellular second messengers is of considerable biophysical interest. Recent studies have gained significant insight into the molecular mechanism of intracellular regulation by pH. This review illustrates the various modes of regulation of this class of ion channel and the present knowledge of the underlying molecular mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s004240000380DOI Listing

Publication Analysis

Top Keywords

kir channels
12
intracellular regulation
8
intracellular second
8
second messengers
8
molecular mechanism
8
intracellular
6
channels
5
regulation rectifier
4
rectifier channels
4
channels rectifier
4

Similar Publications

Direct effects of antipsychotics on potassium channels.

Biochem Biophys Res Commun

January 2025

Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea. Electronic address:

Schizophrenia (SCZ) and bipolar disorder (BD) and are severe psychiatric conditions that contribute to disability and increased healthcare costs globally. Although first-, second-, and third-generation antipsychotics are available for treating BD and SCZ, most have various side effects unrelated to their unique functions. Many antipsychotics affect K channels (Kv, K, Kir, K, and other channels), which change the functions of various organs.

View Article and Find Full Text PDF

Roles of calcium in ameloblasts during tooth development: A scoping review.

J Taibah Univ Med Sci

February 2025

Department of Prosthodontics/Dental Material, Dr. Ziauddin Ahmad Dental College, Aligarh Muslim University, India.

Objectives: Calcium ions (Ca) play crucial role in tooth development, particularly in maintaining enamel density during amelogenesis. Ameloblasts require specific proteins such as amelogenin, ameloblastin, enamelin, kallikrein, and collagen for enamel growth. Recent research has highlighted the importance of calcium and fluoride ions, as well as the TRPM7, STIM, and SOCE pathways, in regulating various stages of enamel formation.

View Article and Find Full Text PDF

Potassium Current Signature of Neuronal/Glial Progenitors in Amniotic Fluid Stem Cells.

Cells

January 2025

Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.

Article Synopsis
  • Amniotic fluid contains stem cells (AF-SCs) that have potential uses in regenerative medicine for treating various injuries and diseases.
  • When exposed to basic Fibroblast Growth Factor (bFGF), AF-SCs show the ability to survive and migrate in a rat brain model, resembling characteristics of neuronal/glial progenitor cells.
  • The study employs electrophysiological techniques to identify specific potassium currents in AF-SCs and confirms that histamine can influence calcium dynamics and potassium current activation in these cells.
View Article and Find Full Text PDF

Inward rectifying potassium (Kir) channels play a critical role in maintaining the resting membrane potential and cellular homeostasis. The high-resolution crystal structure of homotetrameric KirBac1.1 in detergent micelles provides a snapshot of the closed state.

View Article and Find Full Text PDF

Pore blocking mechanisms of centipede toxin SsTx-4 on the inwardly rectifying potassium channels.

Eur J Pharmacol

February 2025

The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China. Electronic address:

The peptide toxin SsTx-4 derived from venom of centipede Scolopendra subspinipes mutilans was characterized as a potent antagonist of the inwardly rectifying potassium (Kir) channel subtypes Kir1.1, Kir4.1, and Kir6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!