It is generally believed that platelets do not have a functionally significant protein synthetic machinery. However, our analysis demonstrated that normal bone marrow megakaryocytes express high levels of translation initiation factors eIF-4E and eIF-2alpha and the expression of these protein synthesis initiation factors is continued in platelets (as determined by immunohistochemistry and Western blot analysis). Both eIF-4E and eIF-2alpha are key regulators of protein synthesis. The eIF-4E is a rate-limiting part of a multisubunit complex, eIF-4F, that binds to the 5' cap structure present in virtually all eukaryotic mRNAs, and carries out transfer of mRNAs to ribosomes for translation. Translation initiation factor eIF-2alpha is also a rate-limiting protein which associates with two other proteins to form an eIF-2 initiation factor complex responsible for the transfer of initiator methionyl-tRNA to the 40S ribosomal subunit. We confirm that expression of eIF-4E and eIF-2alpha is biologically relevant in that platelets continue protein synthesis, albeit at a 16 times lower rate than WBC (as determined by 35S-labeled amino acid incorporation, SDS-PAGE and scintillation counting). Finally, we determined that protein synthesis inhibitors (puromycin and emetine) attenuate the platelet aggregation response to a combination of ADP and epinephrine, but potentiate the response to collagen. Our data are consistent with the existence of different signal transducing pathways mediating the response to ADP/epinephrine and collagen. We suggest that the ADP/epinephrine response is positively affected by continuously synthesized proteins, while the response to collagen is modulated by continuously produced inhibitory proteins. Taken together, our results suggest that continuous protein synthesis is important for platelet function and its role in platelet physiology and pathophysiology deserves further study.

Download full-text PDF

Source

Publication Analysis

Top Keywords

protein synthesis
24
translation initiation
12
initiation factors
12
eif-4e eif-2alpha
12
protein
8
continuous protein
8
initiation factor
8
response collagen
8
synthesis
6
initiation
5

Similar Publications

Purpose: To review the current evidence on the association between salivary protein profile and dental caries in children during mixed dentition stage.

Methods: This systematic review followed the PRISMA 2020 guidelines. Searches were run in PubMed, Scopus and Embase along with gray literature.

View Article and Find Full Text PDF

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

IL-7 secreted by keratinocytes induces melanogenesis via c-kit/MAPK signaling pathway in Melan-a melanocytes.

Arch Dermatol Res

January 2025

Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.

Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

Construction of Escherichia coli cell factory for efficient synthesis of indigo.

Chembiochem

January 2025

Jiangnan University, State Key Laboratory of Food Science and Technology, 1800 Lihu Road, Wuxi, China, 214122, Wuxi, CHINA.

Indigo is widely used in dyes, medicines and semiconductors materials due to its excellent dyeing efficiency, antibacterial, antiviral, anticancer, anti-corrosion, and thermostability properties. Here, a biosynthetic pathway for indigo was designed, integrating two enzymes (EcTnaA, MaFMO) into a higher L-tryptophan-producing the strain Escherichia coli TRP. However, the lower catalytic activity of MaFMO was a bottleneck for increasing indigo titers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!