Based on previous studies showing that strontium ranelate (S12911) modulates bone loss in osteoporosis, it could be hypothesized that this drug also is effective on cartilage degradation in osteoarthritis (OA). This was investigated in vitro on normal and OA human chondrocytes treated or not treated with interleukin-1beta (IL-1beta). This model mimics, in vitro, the imbalance between chondroformation and chondroresorption processes observed in vivo in OA cartilage. Chondrocytes were isolated from cartilage by enzymatic digestion and cultured for 24-72 h with 10(-4)-10(-3) M strontium ranelate, 10(-3) M calcium ranelate, or 2 x 10(-3) M SrCl2 with or without IL-1beta or insulin-like growth factor I (IGF-I). Stromelysin activity and stromelysin quantitation were assayed by spectrofluorometry and enzyme amplified sensitivity immunoassay (EASIA), respectively. Proteoglycans (PG) were quantified using a radioimmunoassay. Newly synthesized glycosaminoglycans (GAGs) were quantified by labeled sulfate (Na2(35)SO4) incorporation. This method allowed the PG size after exclusion chromatography to be determined. Strontium ranelate, calcium ranelate, and SrCl2 did not modify stromelysin synthesis even in the presence of IL-1beta. Calcium ranelate induced stromelysin activation whereas strontium compounds were ineffective. Strontium ranelate and SrCl2 both strongly stimulated PG production suggesting an ionic effect of strontium independent of the organic moiety. Moreover, 10(-3) M strontium ranelate increased the stimulatory effect of IGF-I (10(-9) M) on PG synthesis but did not reverse the inhibitory effect of IL-1beta. Strontium ranelate strongly stimulates human cartilage matrix formation in vitro by a direct ionic effect without stimulating the chondroresorption processes. This finding provides a preclinical basis for in vivo testing of strontium ranelate in OA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1359/jbmr.2001.16.2.299 | DOI Listing |
Cureus
November 2024
Orthopedics and Traumatology, Santo António University Hospital Center, Porto, PRT.
Int J Biol Macromol
December 2024
Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China. Electronic address:
Magnesium oxychloride cement (MOC) has the advantage of high early strength. However, it has the defect of poor water resistance. Considering this performance, we use γ-polyglutamic acid (γ-PGA) and chitosan (CS) to modify MOC.
View Article and Find Full Text PDFBone
January 2025
Pharmacoepidemiology and Pharmacovigilance Department, Spanish Agency of Medicines and Medical Devices (AEMPS), Calle Campezo n° 1, Edificio 8, 28022 Madrid, Spain. Electronic address:
Osteoarthritis Cartilage
January 2025
Department of Radiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA; Department of Radiology, Boston VA Healthcare System, West Roxbury, MA, USA.
Objective: To review recent literature evidence describing imaging of osteoarthritis (OA) and to identify the current trends in research on OA imaging.
Method: This is a narrative review of publications in English, published between April, 2023, and March, 2024. A Pubmed search was conducted using the following search terms: osteoarthritis/OA, radiography, ultrasound/US, computed tomography/CT, magnetic resonance imaging/MRI, DXA/DEXA, and artificial intelligence/AI/deep learning.
J Nanobiotechnology
October 2024
Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan.
The prospective of percutaneous drug delivery (PDD) mechanisms to address the limitations of oral and injectable treatment for rheumatoid arthritis (RA) is increasing. These limitations encompass inadequate compliance among patients and acute gastrointestinal side effects. However, the skin's intrinsic layer can frequently hinder the percutaneous dispersion of RA medications, thus mitigating the efficiency of drug delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!