Porphyrins, porphyrin metabolism and porphyrias. I. Update.

Scand J Clin Lab Invest

Porphyria Centre Sweden, CMMS, Huddinge University Hospital, Sweden.

Published: November 2000

The biosynthesis of porphyrins is one of the most conserved parthways known, about the same sequence of reactions taking place in all species. By associating different metals, porphyrins give rise to the "pigments of life": chlorophyll, haem and cobalamin. The unique tetrapyrrolic structure enables it to function in an array of reactions as a single electron carrier and as a catalyst for redox reactions. In this capacity, it constitutes the prosthetic group of enzymes participating in cellular respiration, in conversion reactions involving steroids and lipophilic xenobiotics, in protective mechanisms directed against oxidative stress and in pathways providing central messenger molecules. The formation of haem is accomplished by a sequence of eight dedicated enzymes encoded by different genes, some being active in ubiquitous as well as in erythroid isoforms. Large differences between the participating enzymes with regard to catalytic power, with low capacity steps positioned early in the catalytic chain, constitute a bar against substrate overloading of enzymes processing porphyrins, thus preventing accumulation in the body of these phototoxic compounds under physiological conditions. Most of the haem in the body is produced by the liver and bone marrow, but the mechanisms applied for the control of the synthesis differ between the two organs. The extremely potent hemeprotein enzymes formed in the liver are rapidly turned over in response to current metabolic needs. They have half-lives in the order of minutes or hours and are restored by fast-acting mechanisms for the de novo synthesis, when needed. Uninterrupted and instant availability of the compound is secured by acute deinhibition of the initial enzyme of the synthetic chain, ubiquitous 5-aminolevulinate synthase (ALAS-1), in response to drain of the free cellular haem pool caused by prevailing demands for hemeproteins or by increased catabolism of the compound. In contrast, in the erythroid progenitor cell the haem synthetic machinery is designed for uninterrupted production of huge amounts of haem for combination with globin chains to form hemoglobin at a steady rate. In the erythron the synthesis of the enzymes participating in the formation of haem is under control of erythropoietin, formed under hypoxic conditions. In the absence of iron, to be incorporated in the porphyrin formed in the last step of the synthesis, the mRNA of erythroid 5-aminolevulinate synthase (ALAS-2) is blocked by attachment of an iron-responsive element (IRE) binding cytosolic protein, and transcription of this key enzyme is inhibited. In humans, the genes for each of the haem synthetic enzymes may become the target of mutations that give rise to impaired cellular enzyme activity. Seven of the enzyme deficiencies are associated with accumulation of toxic intermediaries and with disease entities termed porphyrias. The acute porphyrias are characterized by attacks of neuropsychiatric symptoms, which may be due to a toxic surplus of the porphyrin presursor 5-aminolevulinic acid, or a consequence of a deficit of vital hemeproteins resulting from impaired synthesis of haem. In the cutaneous porphyrias, impairment of enzymatic steps where porphyrins are processed gives rise to solar hypersensitivity due to accumulation of phototoxic porphyrins in the skin. Early diagnosis, information to the patient regarding the nature of the illness and counselling aimed at avoidance of triggering factors are cornerstones in the handling of the porphyric diseases. Gene analysis is of incomparable diagnostic reliability in carrier detection, but biochemical methods must be applied in the important task of monitoring porphyric disease activity. In most forms of porphyria the gene carriers run the risk of development of associated diseases in liver or kidneys, a circumstance that prompts application of well-structured surveillance programs.

Download full-text PDF

Source
http://dx.doi.org/10.1080/003655100448310DOI Listing

Publication Analysis

Top Keywords

haem
9
enzymes participating
8
formation haem
8
5-aminolevulinate synthase
8
haem synthetic
8
enzymes
7
porphyrins
6
synthesis
5
porphyrins porphyrin
4
porphyrin metabolism
4

Similar Publications

Sickle cell disease (SCD) is the most common genetic disease in the world and a societal challenge. SCD is characterized by multi-organ injury related to intravascular hemolysis. To understand tissue-specific responses to intravascular hemolysis and exposure to heme, we present a transcriptomic atlas in the primary target organs of HbSS vs HbAA transgenic SCD mice.

View Article and Find Full Text PDF

The remarkable efficiency with which enzymes catalyze small-molecule reactions has driven their widespread application in organic chemistry. Here, we employ automated fast-flow solid-phase synthesis to access catalytically active full-length enzymes without restrictions on the number and structure of noncanonical amino acids incorporated. We demonstrate the total syntheses of iron-dependent myoglobin (BsMb) and sperm whale myoglobin (SwMb).

View Article and Find Full Text PDF

Introduction: Oxidative stress, triggered by an imbalance between reactive oxygen species (ROS) production and cellular antioxidant defense mechanisms, is implicated in various pathological conditions. Plant-derived polysaccharides have gained significant attention as potential natural antioxidants due to their biocompatibility, biodegradability, and structural versatility.

Methods: This study focuses on the purification, structural characterization, and antioxidant activities of a novel pectin polysaccharide (HFPS) isolated from the flowers of Linn.

View Article and Find Full Text PDF

Methyltransferase-like 3 mediates m6A modification of heme oxygenase 1 mRNA to induce ferroptosis of renal tubular epithelial cells in acute kidney injury.

Free Radic Biol Med

January 2025

Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan province, China; Henan Province Research Center for Kidney Disease, Zhengzhou, Henan Province, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan Province, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China. Electronic address:

Acute kidney injury (AKI) involves a series of syndromes characterized by a rapid increase in creatinine levels. Ferroptosis, as an iron-dependent mode of programmed cell death, reportedly participates in the pathogenesis of AKI. Methyltransferase-like 3 (METTL3)-mediated m6A modification has been recently associated with various kidney diseases; however, the mechanism of METTL3 crosstalk with the molecules involved in ferroptosis is not clearly understood.

View Article and Find Full Text PDF

Phthalate exposure is linked to prostate enlargement through sex hormonal changes and oxidative stress. However, its role and action mechanism in prostate cancer remain unclear. This study examined two patient cohorts: 204 patients undergoing prostate biopsy (24 benign and 180 malignancies) and 85 with confirmed prostate cancer receiving robotic-assisted radical prostatectomy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!