Our purpose in this investigation was to determine if we could reduce cage changing frequency without adversely affecting the health of mice. We housed mice at three different cage changing frequencies: 7, 14, and 21 days, each at three different cage ventilation rates: 30, 60 and 100 air changes per hour (ACH), for a total of nine experimental conditions. For each condition, we evaluated the health of 12 breeding pairs and 12 breeding trios of C57BL/6J mice for 7 months. Health was assessed by breeding performance, weanling weight and growth, plasma corticosterone levels, immune function, and histological examination of selected organs. Over a period of 4 months, we monitored the cage microenvironment for ammonia and carbon dioxide concentrations, relative humidity, and temperature one day prior to changing the cage. The relative humidity, carbon dioxide concentrations, and temperature of the cages at all conditions were within acceptable levels. Ammonia concentrations remained below 25 ppm (parts per million) in most cages, but, even at higher concentrations, did not adversely affect the health of mice. Frequency of cage changing had only one significant effect; pup mortality with pair matings was greater at the cage changing frequency of 7 days compared with 14 or 21 days. In addition, pup mortality with pair matings was higher at 30 ACH compared with other ventilation rates. In conclusion, under the conditions of this study, cage changes once every 14 days and ventilation rates of 60 ACH provide optimum conditions for animal health and practical husbandry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1258/0023677011911381 | DOI Listing |
Science
January 2025
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
Architected materials derive their properties from the geometric arrangement of their internal structural elements. Their designs rely on continuous networks of members to control the global mechanical behavior of the bulk. In this study, we introduce a class of materials that consist of discrete concatenated rings or cage particles interlocked in three-dimensional networks, forming polycatenated architected materials (PAMs).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
TU Dortmund University, Faculty for Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, GERMANY.
Precise control over the catenation process in interlocked supramolecular systems remains a significant challenge. Here, we report a system in which a lantern-shaped Pd2L4 cage can dimerize to form two distinct Pd4L8 catenanes with different interlocking degree: a previously described quadruply interlocked double cage motif of D4 symmetry and an unprecedented triply interlocked structure of C2h symmetry. While the former structure features a linear arrangement of four Pd(II) centers, separated by three mechanically linked pockets, the new motif has a staggered shape.
View Article and Find Full Text PDFSpine J
January 2025
International Spine Study Group Foundation, Denver, Colorado, USA.
Background Context: Correcting sagittal malalignment in adult spinal deformity (ASD) is a challenging task, often requiring complex surgical interventions like pedicle subtraction osteotomies (PSOs). Different types of three-column osteotomies (3COs), including Schwab 3, Schwab 4, Schwab 4 with interbody cages, and the "sandwich" technique, aim to optimize alignment and fusion outcomes. The role of interbody cages in enhancing fusion and segmental correction remains unclear.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
The integration of spin crossover (SCO) magnetic switching and electric polarization properties can engender intriguing correlated magnetic and electric phenomena. However, achieving substantial SCO-induced polarization change through rational molecular design remains a formidable challenge. Herein, we present a polar Fe(II) compound that exhibits substantial polarization change in response to a thermally regulated low-spin ↔ high-spin transition.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, 34151 Trieste, Italy.
We reassess the modeling of amorphous silica bilayers as a 2D classical system whose particles interact with an effective pairwise potential. We show that it is possible to reparametrize the potential developed by Roy, Heyde, and Heuer to quantitatively match the structural details of the experimental samples. We then study the glassy dynamics of the reparametrized model at low temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!