Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-291x(75)90429-5DOI Listing

Publication Analysis

Top Keywords

enhancement immune
4
immune response
4
response proteinaceous
4
proteinaceous crystal
4
crystal bacillus
4
bacillus thuringiensis
4
thuringiensis var
4
var thuringiensis
4
thuringiensis
2
enhancement
1

Similar Publications

State-Level Influenza Hospitalization Burden in the United States, 2022-2023.

Am J Public Health

January 2025

Alexia Couture, A. Danielle Iuliano, Ryan Threlkel, Matthew Gilmer, Alissa O'Halloran, Dawud Ujamaa, Matthew Biggerstaff, and Carrie Reed are with the National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA. Howard H. Chang is with the Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA.

To develop a method leveraging hospital-based surveillance to estimate influenza-related hospitalizations by state, age, and month as a means of enhancing current US influenza burden estimation efforts. Using data from the Influenza Hospitalization Surveillance Network (FluSurv-NET), we extrapolated monthly FluSurv-NET hospitalization rates after adjusting for testing practices and diagnostic test sensitivities to non-FluSurv-NET states. We used a Poisson zero-inflated model with an overdispersion parameter within the Bayesian hierarchical framework and accounted for uncertainty and variability between states and across time.

View Article and Find Full Text PDF

Sonodynamic therapy, a treatment modality recently widely used, is capable of disrupting the tumor microenvironment by inducing immunogenic cell death (ICD) and enhancing antitumor immunity during immunotherapy. Erdafitinib, an inhibitor of the fibroblast growth factor receptor, has demonstrated potential benefits for treating bladder cancer. However, Erdafitinib shows effectiveness in only a small number of patients, and the majority of patients responding positively to the medication have "immune-cold" tumors.

View Article and Find Full Text PDF

Regulated sequential exocytosis of neutrophil granules is essential in orchestrating the innate immune response, while uncontrolled secretion causes inflammation. We developed and characterized Nexinhib20, a small-molecule inhibitor that targets azurophilic granule exocytosis in neutrophils by blocking the interaction between the small GTPase Rab27a and its effector JFC1. Its therapeutic potential has been demonstrated in several pre-clinical models of inflammatory disease.

View Article and Find Full Text PDF

CBX2 suppresses interferon signaling to diminish tumor immunogenicity via a noncanonical corepressor complex.

Proc Natl Acad Sci U S A

February 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China.

Chromobox 2 (CBX2), a crucial component of the polycomb repressive complex (PRC), has been implicated in the development of various human cancers. However, its role in the regulation of tumor immunogenicity and immune evasion remains inadequately understood. In this study, we found that ablation of CBX2 led to tumor growth inhibition, activation of the tumor immune microenvironment, and enhanced therapeutic efficacy of anti-PD1 or adoptive T cell therapies by using murine syngeneic tumor models.

View Article and Find Full Text PDF

Cardiovascular and cardiometabolic diseases are leading causes of morbidity and mortality worldwide, driven in part by chronic inflammation. Emerging research suggests that the bone marrow microenvironment, or marrow niche, plays a critical role in both immune system regulation and disease progression. The bone marrow niche is essential for maintaining hematopoietic stem cells (HSCs) and orchestrating hematopoiesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!